Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://e.ieu.edu.ua/handle/123456789/1054
Название: METHODOLOGY OF THE COUNTRIES’ ECONOMIC DEVELOPMENT DATA ANALYSIS
Авторы: DONETS, V.V.
STRILETS, V.Y.
UGRYUMOV, M.L.
SHEVCHENKO, D.O.
PROKOPOVYCH, S.V.
CHAGOVETS, L.O.
Ключевые слова: machine learning, digital development, fuzzy clustering, radial basis neural networks, logistic regression, analysis of variables informativeness.
Дата публикации: 4-фев-2023
Библиографическое описание: V.V. DONETS, V.Y. STRILETS, M.L. UGRYUMOV, D.O. SHEVCHENKO, S.V. PROKOPOVYCH, L.O. CHAGOVETS. 2023. METHODOLOGY OF THE COUNTRIES’ ECONOMIC DEVELOPMENT DATA ANALYSIS. 21-36. DOI: 10.20535/SRIT.2308-8893.2023.4.02
Краткий осмотр (реферат): The paper examines the issue of improving the methods of identification of economic objects and their analysis using algorithms of intelligent data process- ing. The use of the developed methodology in the economic analysis allows for improvement in the quality of management. It can be the basis for creating decision support systems to prevent potentially dangerous changes in the economic status of the research object. In this work, an improved method of c-means data clustering with agent-oriented modification is proposed, and a radial-basis neural network and its extension are proposed to determine whether the obtained clusters are relevant and to analyze the informativeness of state variables and obtain a subset of informa- tive variables. The effect of applying data compression using an autoencoder on the accuracy of the methods is also considered. According to the results of testing of the developed methodology, it was proved that the probability of incorrect determina- tion of the state was reduced when identifying the states of economic systems, and a reduced value of the error of the third kind was obtained when classifying the states of objects.
URI (Унифицированный идентификатор ресурса): http://e.ieu.edu.ua/handle/123456789/1054
Располагается в коллекциях:Кафедра інформаційних технологій

Файлы этого ресурса:
Файл Описание РазмерФормат 
297208-Article Text-685937-1-10-20240122.pdf428.13 kBAdobe PDFОткрыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.