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Abstract: The prediction of outcomes following cardiac arrest continues to provide significant
difficulties. A preferred strategy involves adopting a multimodal approach, which encompasses
the careful evaluation of the biomarker neuron-specific enolase (NSE). This systematic review and
meta-analysis aimed to gather and summarize new and existing evidence on the prediction effect
of neuron-specific enolase for survival to hospital discharge among adult patients with cardiac
arrest. We searched PubMed Central, Scopus, EMBASE databases, and the Cochrane Library without
language restrictions from their inceptions until 30 October 2023 and checked the reference lists of the
included studies. Pooled results were reported as standardized mean differences (SMDs) and were
presented with corresponding 95% confidence intervals (CIs). The primary outcome was survival to
hospital discharge (SHD). Eighty-six articles with 10,845 participants were included. NSE showed a
notable degree of specificity in its ability to predict mortality as well as neurological status among
individuals who experienced cardiac arrest (p < 0.05). This study demonstrates the ability to predict
fatality rates and neurological outcomes, both during the time of admission and at various time
intervals after cardiac arrest. The use of NSE in a multimodal neuroprognostication algorithm has
promise in improving the accuracy of prognoses for persons who have undergone cardiac arrest.

Keywords: neuron-specific enolase; NSE; cardiopulmonary resuscitation; cardiac arrest; biomarker;
biological marker; prognosis; survival; evidence-based medicine; meta-analysis

1. Introduction

In the context of medical prognoses following sudden cardiac arrest (SCA), outcomes
are often unfavorable, particularly when cerebral damage results from acute oxygen de-
privation [1,2]. Acute oxygen deprivation is not the only cause for brain injury, but also
the lack of perfusion due to a sudden drop in cardiac output. Prognostic factors, such
as the presence of shockable cardiac rhythms or the occurrence of SCA in the presence
of witnesses, can be readily identified [3]. Advanced age, especially that over 80 years,
exerts an additional detrimental influence on patient prognoses [4], and given our aging
population, the prevalence of such cases is increasing. SCA survivors form a diverse
group, with those maintaining neurological functions facing challenges in post-hospital
care, rehabilitation, and preventing recurrent cardiac events through interventions like
cardioverter–defibrillators or percutaneous coronary interventions [5].
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Cerebral injuries from SCA often lead to significant neurological deficits, including
the need for prolonged mechanical ventilation. Patients may also experience long-term
immobilization, speech disorders, and cognitive impairments, all contributing to a bleaker
prognosis and higher mortality rates after SCA [6]. Prolonged cerebral hypoxia exacerbates
intracranial pressure, especially in the presence of post-SCA brain injuries [6]. Secondary
brain injuries occur as a result of many mechanisms, including as a result of an imbalance
of ions in the intra- and extracellular space in particular calcium ions. The activation
of a number of enzymes dependent on calcium ions leads to further damage due to the
destruction of cell organelles and an increase in oxidative stress. Secondarily, the immune
system is activated, and the blood–brain barrier is breached [7]. Clinicians grapple with
differentiating between patients with promising prospects for brain damage recovery and
those with limited improvement potential, a complex task. Neuroimaging advancements
offer enhanced cerebral visualization but fall short of providing definitive prognostic
insights, prompting research into neurobiomarkers [8,9].

One key neurobiomarker in this context is neuron-specific enolase (NSE), primarily
found in neurons and neuroendocrine cells. Elevated NSE levels following brain injury
result from various mechanisms, including damage to nerve cells leading to NSE release
into the extracellular space. This release stems not only from necrosis but also from
apoptosis due to the indirect consequences of brain injury. Additionally, damage to the
blood–brain barrier can significantly raise NSE concentrations [10]. Despite ongoing
debates regarding its clinical utility, it is crucial to note that even minor hemolysis in
specimens can substantially inflate NSE test results [11,12]. Modern laboratory techniques
have been developed to minimize the risk of hemolysis-related false positives.

Numerous publications have suggested that incorporating NSE levels into existing
prognostic tools can optimize their predictive capabilities. Luescher et al. found that
measuring NSE levels on the third day after a patient admission to an intensive care unit
(ICU) improved clinical risk scores (the out-of-hospital cardiac arrest score and the Cardiac
Arrest Hospital Prognosis Score—CAHP) for predicting the outcomes of cardiac arrest
patients in terms of neurological outcomes and in-hospital mortality [13]. Recent research
has found specific concentration thresholds that indicate brain damage. For example,
concentrations above 100 g/L are linked to poor neurological outcomes and a high level
of specificity, while concentrations below 17 g/L show that severe encephalopathy is not
present. The authors also highlighted potential confounding factors, such as extracorporeal
membrane oxygenation (ECMO), malignancies, or blood transfusions, which could affect
NSE marker accuracy. Importantly, these factors elevated the risk of hemolysis, interfering
with accurate NSE determination [14]. Nevertheless, repeated measurements indicating an
increase in NSE concentration values between 48 and 72 h after cardiac arrest may have
been an element of an algorithm predicting poor neurological outcomes [15]. The proposed
other prognostic algorithm could also include a combination of neurofilament light (NfL)
and NSE by measuring NfL at 24, 48, and 72 h after cardiac arrest, and NSE at 72 h [16].
Previously published meta-analyses did not include all newly published articles, so there is
a scientific justification for a new meta-analysis [17–19].

Considering these factors, this meta-analysis aimed to evaluate the utility of the NSE
neurobiomarker in predicting survival to hospital discharge among SCA patients.

2. Materials and Methods

This systematic review was conducted in line with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [20] and the Meta-Analysis of Obser-
vational Studies in Epidemiology (MOOSE) [21] guidelines. The protocol was developed
a priori and accepted by all authors, and no protocol changes were made during the
study. The review protocol was prospectively submitted and registered in the PROSPERO
database (registration number: CRD42023468523). Due to the character of this study, the
ethics committee portion was not applicable.
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2.1. Literature Search and Selection

A literature search was performed in the PubMed Central, Scopus, and EMBASE
databases, as well as the Cochrane Central Register of Controlled Trials, and included all
articles from inception to the date of abstract extraction on 30 October 2023. The phrases
we used for the literature search were as follows: "neuron-specific enolase" OR "NSE" AND
“cardiac arrest” OR “out-of-hospital cardiac arrest” OR “OHCA” OR “In-hospital cardiac
arrest” OR “heart arrest” OR “cardiopulmonary resuscitation” OR “CPR” OR “sudden
cardiac death” (Table S1).

We performed more surveillance searches using the “related articles” feature, and
we also performed a thorough search of unpublished literature about how NSE infection
affects survival after cardiac arrest. This search encompassed the reference lists of all the
included studies and existing traditional systematic reviews, as well as gray literature
sources such as Google Scholar. The elimination of duplicate findings was undertaken.
Two writers, K.K. and M.P., conducted separate assessments to determine the relevance of
the remaining works. The third researcher (L.S.) checked the list of pertinent publications.

The application of inclusion and exclusion criteria was extended to encompass the
entirety of the remaining articles’ content. The filters employed encompassed many criteria,
namely the exclusion of human studies involving individuals aged 18 or older who had
cardiac arrests, the requirement for studies to be conducted in the English language, the
inclusion of both prospective and retrospective observational studies, and the condition
that the studies were published in peer-reviewed journals.

The following details regarding the search strategy, in the broader context of the
review question and selection of papers, needs to be clarified: P (population): patients
suffering from cardiac arrest (out-of-hospital or in-hospital-cardiac arrest); I (intervention):
the determination of neuron-specific enolase (NSE); OHCA: treated with cardiopulmonary
resuscitation; C (comparator): not applicable; O (outcomes): survival of OHCA/IHCA to
hospital discharge; S (study design): observational studies (inc. cross-sectional studies),
non-randomized and randomized clinical trials (if applicable); T (time frame): index time:
(i) 6 h, (ii) 12 h, (iii) 24 h, (iv) 48 h, and (v) 72 h after OHCA.

The purpose of the meta-analysis was not to compare NSE to other biomarkers; hence,
no comparator was indicated.

2.2. Data Extraction and Quality Assessment

K.K. and M.P. independently extracted the data from each of the included studies
and entered them into a thorough spreadsheet, which a third reviewer (L.S. or M.T.)
independently verified. The extracted data comprised the baseline and methodological
features of the studies, that is, the first author’s name, the country in which the study
was conducted, study design, total participants, study population, age, sex, NSE levels,
in-hospital survival, and the mortality rate.

The assessment of the risk of bias in each study was independently carried out by two
reviewers using standardized tools. The Newcastle–Ottawa Scale (NOS) [22] was used by
the authors to independently assess (K.K. and M.T.) the risk of bias in each study. Quality
rating disagreements were resolved by discussion among all authors. We utilized the NOS
to assess the quality of each observational study, which included judgments on the selection
of study subjects, the comparability between study groups, as well as the outcomes of each
study. The total scores that could be obtained using this tool were 0–9, where research with
a total score of ≥7 was considered to have good quality [23].

2.3. Data Synthesis and Meta-Analysis

The statistical analysis was conducted with STATA (Software for Statistics and Data
Science, StataCorp, College Station, TX, USA) software version 17.0 and Review Manager
(Nordic Cochrane Centre, Cochrane Collaboration) software version 5.4. All statistical tests
were two-sided, and the significance level was defined as p < 0.05. We used odds ratios
(ORs) as the effect measure with 95% confidence intervals (CIs) for dichotomous data and
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standardized mean differences (SMDs) with a 95% CI for continuous data. In this case, the
continuous outcome was reported in a study as median, range, and interquartile range.
We estimated the means and standard deviations using the formula described by Hozo
et al. [24]. Heterogeneity was statistically assessed using the Q test and I2 statistics. A
random synthesis analysis was performed if I2 ≥ 50% or the p value of the Q tests was less
than 0.05. Otherwise, a fixed pooled meta-analysis was performed [25]. We utilized Egger’s
test and funnel plots to check for possible biases and funnel plot tests for asymmetry to
assess potential publication biases if more than ten trials were included in a single meta-
analysis. A sensitivity analysis using leave-one-out cross-validation was performed to test
the robustness of the findings.

3. Results

Based on the information depicted in Figure 1, the total count of publications resulting
from the database searches amounted to 2775. Out of the total, a total of 1641 duplicate
publications were removed. Following an initial screening of titles and abstracts, a total
of 148 publications were chosen for a comprehensive evaluation of their complete texts.
Subsequently, 62 papers were removed from the analysis since they lacked a control group
or did not provide any relevant data.
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Figure 1. Flow diagram of the search strategy and study selection.

A thorough investigation was undertaken, encompassing a total of 86 studies that met
all the stated criteria for inclusion [12,15,26–108]. The aforementioned papers were then
incorporated into the meta-analysis. Among those articles, 7 provided data on both the
survival rate and neurological outcome, while the other 18 and 61 articles only mentioned
information on the survival rate and neurological status, respectively (Figure 2).
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Their overall quality was good, with fourteen studies scoring 9/9 on the NOS, the
remaining seventy studies scoring 8/9 and twelve studies scoring 7/9 (Table S2).

3.1. Study Populations

Eighty-six articles with 10,845 participants were included, and Table S2 displays the
main characteristics of these studies. The majority of studies were prospective studies
(n = 55), with sample sizes ranging from n = 15 to n = 793. Overall, 21 studies took place
in the Republic of Korea, 15 in Germany, 6 in France, 6 in Austria, 4 in Sweden, 4 in
Switzerland, 3 in Japan, 3 in the UK, 2 in China, 2 in Luxemburg, 2 in Portugal, 2 in Spain,
2 in the USA, and 1 each, respectively, in Belgium, the Czech Republic, Israel, Norway,
Poland, and Romania. In addition, one study [24] was a multicenter study involving
research centers from Denmark, Italy, Poland, the UK, and Spain.

3.2. Meta-Analysis of NSE as a Survival Prognostic Marker

Thirteen studies reported NSE levels immediately after admitting a patient after
cardiac arrest. The pooled analysis showed that patients who survived to hospital discharge
had statistically significantly lower NSE levels compared with those who died in the
hospital (SMD = −1.43; 95% CI: −1.90 to −0.96; p < 0.001; Figure 3). The subgroup analysis
showed that for OHCAs, NSE levels were statistically significantly lower in survivors
compared to non-survivors (SMD = 1.32; 95% CI: −2.02 to −0.63; p < 0.001). In contrast, no
such relationship was noted for patients with IHCAs (SMD = 0.08; 95% CI: −0.99 to 1.16;
p = 0.88). The results from the sensitivity analysis did not alter the direction. The funnel
plot and Egger’s linear regression test failed to detect a publication bias (Figure S1).
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Four studies reported NSE levels 6 h after cardiac arrest follow-up. Based on a pooled
analysis, the NSE levels of patients who lived and those who died were 16.61 ± 12.13 and
39.36 ± 46.99 µg/L, respectively (Figures 4 and 5; SMD = −1.62; 95% CI: −2.43 to −0.81;
p < 0.001). Among this group, two articles referred to OHCA patients, and NSE levels were
24.1 ± 16.4 vs. 58.5 ± 66.1 (SMD = −1.30; 95% CI: −1.97 to −0.63; p < 0.001).
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Statistically significantly lower levels of NSE were observed for patients who survived
compared to patients who did not survive hospital discharge in all other time periods
analyzed (Figure 6): 23.9 ± 13.46 vs. 44.99 ± 28.14 µg/L for measurements 12 h after
cardiac arrest (SMD = −2.20; 95% CI: −3.51 to −0.88; p = 0.001). In a subgroup of patients
with OHCAs, NSE values varied among patients who survived vs. those that decreased:
30.4 ± 15.6 vs. 47.8 ± 32.8, respectively (SMD = −1.14; 95% CI: −2.18 to −0.11; p = 0.03).

When measured 24 h after cardiac arrest, the NSE values were, respectively, 26.21 ± 22.67
for survivors and 70.22 ± 37.75 µg/L for patients who did not survive hospital discharge
(SMD = −2.90; 95% CI: −3.68 to −2.12; p < 0.001; Figure 5). Sub-analyses showed that
lower NSE values were observed in the group of patients who survived than those in the
group of patients who died. This was true for both OHCAs (30.1 ± 9.9 vs. 84.1 ± 47.1;
SMD = −2.42; −3.65 to −1.18; p < 0.001) as well as IHCAs (31.74 ± 13.31 vs. 78.07 ± 63.11;
SMD = −0.94; 95% CI: −1.80 to −0.09; p = 0.03).

In the case of measurements 48 h after CA, a pooled analysis showed that NSE levels
were 27.97 ± 9.44 vs. 110.21 ± 67.41 µg/L, respectively (SMD = −2.58; 95% CI: −3.34 to
−1.82; p < 0.001). A similar relationship was observed in the OHCA subgroup (26.7 ± 26.5
vs. 129.5 ± 79.3; SMD = −2.49; 95% CI: −3.67 to −1.30; p < 0.001) as well as in the IHCA
group 24.12 ± 10.12 vs. 172.33 ± 114.77; SMD = −1.79; 95% CI: −2.96 to −0.61; p = 0.003).

When NSE was measured 72 h after cardiac arrest, we also observed statistically
significant disparities in NSE values between survivors and decompensated patients, both
in terms of all the studies analyzed (34.08 ± 36.56 vs. 122.03 ± 67.15 µg/L; SMD = −2.98;
95% CI: −3.95 to −2.01; p < 0.001) and in the sub-analysis of OHCA patients (35.9 ± 37.5
vs. 129.1 ± 66.7; SMD = −3.03; 95% CI: −4.22 to −1.83; p < 0.001).
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3.3. Meta-Analysis of NSE as a Neurological Prognostic Marker

The pooled analysis of NSE levels measured at baseline (after ROSC) among pa-
tients who survived with good vs. poor neurological outcomes varied and amounted to
28.89 ± 14.54 vs. 45.96 ± 48.01 µg/L, respectively (SMD = −1.26; 95% CI: 1–59 to −0.93;
p < 0.001; Figures 6 and S2). The subgroup analysis among OHCA patients showed that
NSE levels were 28.68 ± 15.46 and 47.90 ± 38.19 µg/L, respectively (SMD = −1.36; 95% CI:
−1.93 to −0.78; p < 0.001).
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The measurement of NSE in all cohorts on day 1 after ROSC showed statistically signif-
icant differences between the groups with good and poor neurological statuses: 25.99 ± 13.34
vs. 59.83 ± 47.24 µg/L (SMD = −1.99; 95% CI: −2.90 to −1.60; p < 0.001). A similar re-
lationship was also observed in the subgroup of patients with OHCAs (29.33 ± 14.52 vs.
73.05 ± 58.66 µg/L; SMD = −2.25; 95% CI: −2.90 to −1.60; p < 0.001; Figure S3).

The measurement of NSE on day 2 among the entire cohort of patients as well as in
the group of OHCA patients varied between patients who survived cardiac arrest with
good and poor neurological outcomes: 21.45 ± 13.05 vs. 97.29 ± 67.79 µg/L (SMD = −2.88;
95% CI: −3.30 to −2.46; p < 0.001; Figure 5) and 23.09 ± 14.45 vs. 112.01 ± 70.53 µg/L
(SMD = −3.39; 95% CI: −4.08 to −2.71; p < 0.001), respectively (Figure S4).

The measurement of NSE on day 3 after cardiac arrest showed statistically signif-
icant differences among the study groups both in the entire cohort (22.26 ± 12.43 vs.
126.83 ± 81.63; p < 0.001) and in the sub-analysis for OHCA patients (24.82 ± 14.07 vs.
139.34 ± 88.02; p < 0.001; Figure S5).

A similar relationship was observed in the aspect of measurements on days 5 and 7
after cardiac arrest (Table 1).

The peak NSE levels in good and poor neurological outcome groups were reported
among eight studies. The pooled analysis showed that lower levels of NSE were observed
in the good neurological outcome group (27.16 ± 11.23 µg/L) than in the poor neurolog-
ical outcome group (111.66 ± 91.79 µg/L; p < 0.001). The sub-analysis showed similar
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dependencies among OHCA (29.26 ± 12.8 vs. 119.53 ± 90.34; p = 0.02) and IHCA patients
(24.78 ± 4.09 vs. 105.77 ± 110.66; p = 0.008; Figure S6).

Table 1. Pooled analysis of Neuron-Specific Enolase (NSE) levels among good and poor neurological
outcome groups.

Measurement
Period after

Cardiac Arrest
No. of Studies

Mean ± SD Events Heterogeneity
between Trials p-Value for

Differences
across GroupsGood

Outcome Poor Outcome SMD 95% CI p-Value I2

Statistics

Neuron-Specific Enolase (NSE) on day 0 (µg/L)

All trials 29 28.89 ± 15.46 45.96 ± 48.01 −1.26 −1.59 to −0.93 <0.001 94% <0.001

OHCA 17 28.68 ± 15.46 47.90 ± 38.19 −1.36 −1.93 to −0.78 <0.001 95% <0.001

Neuron-Specific Enolase (NSE) on day 1 (µg/L)

All trials 35 25.99 ± 13.34 59.83 ± 47.24 −1.99 −2.36 to −1.62 <0.001 95% <0.001

OHCA 16 29.33 ± 14.52 73.05 ± 58.66 −2.25 −2.90 to −1.60 <0.001 96% <0.001

Neuron-Specific Enolase (NSE) on day 2 (µg/L)

All trials 41 21.45 ± 13.05 97.29 ± 67.79 −2.88 −3.30 to −2.46 <0.001 96% <0.001

OHCA 21 23.09 ± 14.45 112.01 ± 70.53 −3.39 −4.08 to −2.71 <0.001 97% <0.001

Neuron-Specific Enolase (NSE) on day 3 (µg/L)

All trials 40 22.26 ± 12.43 126.83 ± 81.63 −3.09 −3.52 to −2.45 <0.001 96% <0.001

OHCA 23 24.82 ± 14.07 139.34 ± 88.02 −3.04 −3.62 to −2.46 <0.001 97% <0.001

Neuron-Specific Enolase (NSE) on day 5 (µg/L)

All trials 2 15.16 ± 3.43 50.37 ± 12.23 −4.16 −5.01 to −3.32 0.02 81% <0.001

OHCA 2 15.16 ± 3.43 50.37 ± 12.23 −4.16 −5.01 to −3.32 0.02 81% <0.001

Neuron-Specific Enolase (NSE) on day 7 (µg/L)

All trials 3 15.17 ± 3.99 26.74 ± 5.08 −3.24 −3.60 to −2.88 0.19 40% <0.001

OHCA 3 15.17 ± 3.99 26.74 ± 5.08 −3.24 −3.60 to −2.88 0.19 40% <0.001

Peak of Neuron-Specific Enolae (µg/L)

All trials 7 27.16 ± 11.23 111.66 ± 91.79 −2.14 −3.13 to −1.15 <0.0001 98% <0.001

OHCA 3 29.26 ± 12.80 119.53 ± 90.34 −2.59 −4.81 to −0.37 <0.001 99% 0.02

IHCA 2 24.78 ± 4.09 105.77 ± 110.66 −1.89 −3.28 to −0.49 <0.001 92% 0.008

Legend: CI: confidence interval; IHCA: in-hospital cardiac arrest; OHCA: out-of-hospital cardiac arrest; SMD:
standardized mean difference.

4. Discussion

The role of NSE was highlighted in the European Resuscitation Council and European
Society of Intensive Care Medicine guidelines for post-resuscitation care published in 2021,
in which an NSE concentration above 60 µg/L was one of the factors that predicted the
likelihood of a poor prognosis. Moreover, the mentioned guideline indicated that increased
NSE concentrations between 24 and 48 h (or 72 h), combined with a high isolated NSE
value at 48 and 72 h, were associated with a poor prognosis [109]. NSE concentration can
also be used to assess whether signs of hypoxic ischemic encephalopathy can be observed
with head computed tomography [110]. Taking into account the above, the aim of this
meta-analysis, i.e., demonstrating the usefulness of NSE testing in predicting survival
in patients after a cardiac arrest, was even more clinically important. The results of the
meta-analysis indicated that the high difference in NSE values between survivors and
non-survivors may be an additional argument for popularizing the use of biomarkers in
patients after cardiac arrests. Rapid patient stratification and the identification of a cohort
of patients with a good prognosis may allow for the optimization of early care in ICU
units. Biomarkers could also show us patients for whom rehabilitation would bring the
greatest clinical improvement [111]. The question about the usefulness of NSE is still valid,
especially in the context of the advantage of NSE over other biomarkers. This topic is still
open, as suggested by the results of one of the meta-analyses covering a total of 86 studies
with 10,567 patients, which indicated that NfL, followed by tau, has greater diagnostic
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accuracy in predicting favorable vs. unfavorable neurologic outcomes compared with
NSE, S100β, glial fibrillary acidic protein (GFAP), and ubiquitin-C-terminal-hydrolase-L1
(UCH-L1) [112].

4.1. Searching for New Biomarkers and Regulatory Approaches

The search for new biomarkers indicating significant brain damage during the course
of hypoxia, e.g., as a result of sudden cardiac arrest, is the subject of intensive research.
New biomarkers with high specificity and sensitivity are being searched for. In a recently
published study, Fink et al. analyzed the predictive properties of biomarkers (glial fibrillary
acidic protein (GFAP), ubiquitin carboxyl-terminal esterase L1 (UCH-L1), neurofilament
light (NfL), and tau concentrations) in pediatric patients after cardiac arrest. Measurements
were made between 1 and 3 days after cardiac arrest. In the cited cohort study, NfL was a
biomarker that was particularly useful in predicting an unfavorable prognosis (death and
significant functional impairment) one year after cardiac arrest [113–115]. NfL was also
the subject of a recently published meta-analysis that demonstrated its particular utility
in predicting neurological statuses when measured 72 h after cardiac arrest. Based on the
results obtained from 804 patients, the sensitivity and specificity of NfL after 72 h were
determined to be 90% and 98%, respectively [116]. The usefulness of this biomarker was
also demonstrated in another meta-analysis among patients with concussions [117]. A
promising direction is also the search for biomarkers of non-protein origins, e.g., micro-RNA
(miRNA) from extracellular vesicles (EVs). Shen et al. showed, among other things, that
miR-124 determined 6 h after resuscitation correlated with the patient’s clinical condition
at the time of discharge [118].

It is worth mentioning the decision of the American regulatory body, the Food and
Drug Administration, which, in 2018, approved the use of Brain Trauma Indicator (BTI) and
UCH-L1 and GFAP in the process of determining the need to perform computed tomog-
raphy of the head after a mild traumatic brain injury [119]. Despite the dissemination of
knowledge about their predictive abilities, in the opinion of physicians, their measurement
was still not common. Physicians are also skeptical about the possibility of basing the
prognosis only on biomarker concentration values, and it is also necessary to perform elec-
trophysiological tests and neuroimaging [120]. The need for an interdisciplinary approach
in neuroprognostication has also also indicated in the Canadian Cardiovascular Society
Position Statement, in which biomarkers are just one of many indicated aspects that should
be taken into account when determining patient prognoses [121,122]. Other sources also
point to the need for an interdisciplinary approach [123].

4.2. Obstacles to Implementing NSE into Routine Clinical Practice

Another issue that may limit the widespread use of biomarkers in prognosis estimation
is the determination of the cut-off level (significant vs. non-significant) [124]. To avoid a self-
fulfilling prophecy, any prediction of patient prognoses should be based on a multi-criterion
approach, taking into account clinical assessments by an interdisciplinary team and using
neuroimaging and EEG techniques. The adaptation of guidelines is one of the basic steps
that can lead to the popularization of biomarkers. Additionally, laboratories should expand
the scope of testing when a new predictive biomarker is introduced based on the guidelines.
Biomarker determination should also be adequately reimbursed from public funds or by
private insurers (depending on the specific characteristics of the healthcare system). This
meta-analysis was based on observational studies, mostly prospective and, to a lesser extent,
retrospective. Therefore, it is important to remember all the limitations of observational
studies. Another issue may have been differences in the biomarker measurement technique.
Various sites were included in the studies, and central analyses were generally not used,
which may have limited the comparability of the results. Nevertheless, the purpose of
using biomarkers, including NSE, in predicting outcomes is to allow for quick and effective
modifications in the therapeutic process.
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4.3. NSE and Prediction of Neurological Status

Moreover, our meta-analysis showed that the higher the NSE value, the worse the
patient’s prognosis in terms of neurological status. Of particular importance were the
results indicating that high NSE concentrations on the third day after sudden cardiac arrest
may be particularly useful in predicting neurological outcomes. However, it is worth
remembering that hemolysis may lead to NSE levels that are too high, which are also
released from cells other than nerve cells, e.g., red blood cells. Additionally, hemolysis
tests are not routinely performed on resuscitated patients. An alternative to NSE in this
context may be the previously mentioned neurofilament light chain (NfL), an element of the
cytoskeleton of nerve cells. Compared to NSE, NfL has not been identified in cells other than
neuronal cells. In this context, Abdi Isse et al. [125] showed that high free hemoglobin at
admission was associated with higher NSE concentrations after 48 h, but without affecting
the predictive abilities of NSE and NfL. Therefore, the effect of hemolysis described in
the literature and mentioned in the introduction may have less clinical significance than
expected. The differences in NfL values between patients with good outcomes compared
with those of poor outcomes were nevertheless very clear, as indicated by one of the papers
published in 2021, where forty-eight hours after OHCA, the median NfL concentration was
19 pg/mL in patients with a good outcome and 2343 pg/mL in those with a poor outcome,
p < 0.001 [126].

4.4. Limitations

This study had some limitations. Initially, the NSE level data demonstrated significant
heterogeneity, with substantial overlap observed between the illness groups and control
subjects. Hence, it is imperative to exercise caution when applying this biomarker in clinical
settings. Furthermore, high levels of NSE indicated neuronal injuries, although they were
not specific to any one disease. In addition, the scope of the meta-analysis was restricted
to assessing the mortality prognostic effectiveness of the NSE test. The establishment of
a conclusive threshold for NSE could not be ascertained through the process of the meta-
analysis. Given the existing recommendations, it is recommended that each institution
establish its own distinct set of reference values and thresholds relevant to the particular
biomarker under consideration. Since the current meta-analysis was about the diagnostic
accuracy/prediction of a biomarker, one may argue that the NOS tool used for the risk
of bias assessment was not appropriate. Although the NOS tool has been widely used in
a way analogous to our meta-analysis, the risk of bias assessment should be considered
with due caution. Moreover, to avoid a self-fulfilling prophecy, any prediction of patient
prognosis should be based on a multi-criterion approach.

5. Conclusions

Neuron-specific enolase showed an ability to distinguish survivors from non-survivors
(mortality) and neurological outcomes among individuals who had experienced cardiac
arrest. This study demonstrated the ability to distinguish fatality rates and neurological
outcomes, both during the time of admission and at various time intervals following cardiac
arrest. The use of NSE in a multimodal neuroprognostication algorithm has promise in
improving the accuracy of prognoses for persons who have undergone cardiac arrest, but
further studies are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12247655/s1, Table S1: Search strategy; Table S2: Baseline
characteristics of included trials; Figure S1: Funnel plot analysis. Funnel plot analysis showing
asymmetrical funnel plot for NSE as a survival prognostic marker; Figure S2: Forest plot of NSE
levels among good vs. poor neurological outcomes measured at baseline; Figure S3: Forest plot of
NSE levels among good vs. poor neurological outcomes measured one day after cardiopulmonary
resuscitation; Figure S4: Forest plot of NSE levels among good vs. poor neurological outcomes
measured two days after cardiopulmonary resuscitation; Figure S5: Forest plot of NSE levels among
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good vs. poor neurological outcomes measured three days after cardiopulmonary resuscitation;
Figure S6: Forest plot of peak NSE levels among good vs. poor neurological outcome groups.
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