

INTERNATIONAL EUROPEAN UNIVERSITY
Scientific and educational institute

"European School of Business"

Falovskyi O. O.
Nesterenko O. V.

BASICS OF DATABASE DESIGN
AND USING

SECTION I

Tutorial

Kyiv - 2023

BBK 74.48
UDK 372.8:004.04
О75

Recommended for publication by the Academic Council of the International
European University (Protocol № 10 from 2022.12.29)

Reviewers::
I. V. Kazachkov, Doctor of Sciences (Phys.-Math.), Professor, International
European University
V. L. Shevchenko, Doctor of Sciences (Tech.), Professor, Institute of Software
Systems of the National Academy of Sciences of Ukraine
O. I. Shiyan, Candidate of Sciences (Phys.-Math.), Associent Professor, Vinnytsia
National Technical University

Falovskyi O. O., Nesterenko О. V. Basics of database design and using: Tutorial.
Section I. Kyiv: Tropea - 2023. 83 p.

This Tutorial is designed to support the study of the discipline "Databases" for

students enrolled in undergraduate programs in the specialty "Software
Engineering". In addition, students of higher education institutions studying the
disciplines of computer science, information technology and systems analysis can
use the Tutorial.

Database technologies, taking into account current trends in improving the
management of enterprises and the capabilities of information and communication
technologies, is a promising area of automation of management work and other areas
of activity. The manual contains basic information about the information factors of
creating databases in enterprises, the organization of databases and knowledge
bases, the use of data models, the features of the architecture of database
management systems. An overview of some database maintenance software
products available on the market is provided.

In addition to students and teachers, this publication can be useful for
managers and professionals in the field of economics, as well as for scientists who
are interested in the practical problems of creating databases in the field of
management.

ISBN 978-617-7894-79-6 © O.O. Falovskyi, 2023
 © О.V. Nesterenko, 2023
 © International European University, 2023

3

CONTENT

 INTRODUCTION ………………………………………………………. 6
1. DATABASE CONCEPT ……………………………………………..11
1.1. The concept of data, information and database 11

1.2. Database organization technologies .. 17

1.3. Databases models ... 22

Test questions and tasks .. 26

2. THE CONCEPT OF DATA MODEL ………………………………..28
2.1. Properties of relations ... 28

2.2. Normalization of relations.. 30

2.3. Relations operations... 34

Test questions and tasks .. 41

3. SEMANTIC MODELING …………………...……………………….42
3.1. Basic concepts of semantic modeling .. 42

3.2. Construction of semantic models .. 45

3.3. Diagrams of entity relationships .. 48

Test questions and tasks .. 51

4. INTRODUCTION TO DATABASE PROGRAMMING ……………52
4.1. The concept of SQL language ... 52

4.2. Data types in SQL .. 55

4.3. Transact-SQL ... 58

4.4. Special database objects .. 60

4.5. Development of user applications in the ‘client-server’ environment
 ... 63

Test questions and tasks .. 65

4

 5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS ….…...66
5.1. General characteristics of the DBMS market 66

5.2. Ms SQL Server ... 68

5.3. Freely distributable DBMS ... 71

5.4. NoSQL DBMS ... 77

Test questions and tasks .. 81

LITERATURE …………………………………………………………...82

5

 LIST OF ABBREVIATIONS

AI - Artificial Intelligence;
API - Application Programming Interface;
BI - Business Intelligence;
CGI - Common Gateway Interface;
DB - Database;
DBMS - Database Management System;
DW - Data Warehouse;
HMI - Human Machine Interface;
IoT - Internet of Things;
IS - інформаційна система;
ІТ - інформаційні технології;
ML - Machine learning;
NIST - National Institute of Standards and Technology (USA);
OLAP - Online Analytical Processing;
OLTP - Online Transaction Processing;
SQL - Structured query language;

BASICS OF DATABASE DESIGN AND USING

6

 INTRODUCTION

The current stage of society development is closely connected
with the rapid technological growth and openness of activity, which are
becoming determinants of economic, science and education
development. At the global level, the development of the information
society in the direction of digital transformation in all spheres of
activity has been proclaimed. Due to the development of the Internet
and means of communication, the widespread use of information and
communication technologies significantly increases the intensity of
information exchange, and the main type of activity is information
processing and generating new knowledge.

Information society – the concept of post-industrial society; a
new historical phase of civilization, in which the main products
of production are information and knowledge. Features that
distinguish the information society are: increasing the role of
information and knowledge in society; increasing the share of
information products and services in gross domestic product;
creation of a global information space that provides effective
information interaction of people, their access to global
information resources.

 Information Technologies (IT), Information and
Communication Technologies (ICT) – a set of methods,
production processes and software and hardware integrated to
collect, process, store, disseminate, display and use information
of interest its users.

 Digital transformation (DX) is the adoption of Information
technology by a company. Common goals for its
implementation are to improve efficiency, value or innovation.

In many countries, government regulations and documents

provide for the widespread introduction of automation of information
activities in various spheres of life in order to increase efficiency and

INTRODUCTION

7

achieve a qualitatively new level in the management of enterprises
(organizations, institutions) and regions and the country as a whole.

Determinants in achieving the efficiency of enterprises are
management processes, an integral part of which are information
processes and flows. Today, management tasks have become much
more complex than ever. With the development of production
technology, the scope of management functions and their complexity is
growing rapidly. In these conditions, the achievement of management
goals requires the creation of tools that allow for the storage and
processing of large amounts of information. Therefore, since the early
70's of the twentieth century began to work intensively on the
development of database tools, resulting in the creation and successful
use of new information systems – database management systems
(DBMS).

It should be noted that the historical path of developing the basics
of storage systems begins with research on systems analysis, experience
and methods of specialists and scientists of the early computerization
era, who actualized the role of mathematical thinking and use of models
in information processes.

Ukrainian experience in developing the basics and creating
automated information systems is associated primarily with the name of
the famous scientist Academician V.M. Glushkov. At his initiative and
with the participation of the Kyiv Institute of Cybernetics headed by
him, automated control systems were developed and implemented at
many enterprises, as well as in non-manufacturing organizations.

Growing competition in the market, difficult business conditions
and demanding consumer needs require constant modernization of
business processes in enterprises, changes in basic approaches to
management, methods of promotion and sale of goods and services. In
these conditions, the capabilities of modern DBMSs allow companies to
move to a completely new level of business development through the
active introduction of innovative technologies.

The operation of any enterprise, its basic tactical and strategic
plans are always related to information needs. That is why an active and
effective information policy of the company is the key to success. Using
information technology, specialists and managers can quickly exchange
information, obtain up-to-date data on sellers, buyers, consumers, find

BASICS OF DATABASE DESIGN AND USING

8

the necessary information in databases. The possibility of conducting a
comprehensive analysis of data using mathematical methods and
efficient algorithms is essential. All this helps to make informed
management decisions.

Thus, among the main tasks facing students majoring in
"Information Systems and Technologies", "Software Engineering",
"Computer Science" is an important place to learn the basics of
information processes, understanding the need for models and their
choice, mastering the features of presentation and organization of data
and knowledge, as well as gaining skills in the use of DBMS tools,
knowledge of the architectures of such systems, the features of the user
interface.

Therefore, this tutorial is designed to support the study of the
discipline "Databases" for students enrolled in programs in the above
specialties. The manual contains basic evidence about the information
factors of management and activities at the enterprise, the organization
of data, the use of data models on the features of the DBMS
architecture. An overview of some DBMS software products available
on the market is given. A feature of the manual is a significant amount
of methodical material from the laboratory workshop, which should help
students gain practical skills in creating and using databases.

In this regard, the composition of the manual provides for two
parts – theoretical and practical, and mainly focused on the number of
hours in the curriculum allocated to the discipline for classroom
sessions. Therefore, due to these limitations, many issues remained
outside the scope of the manual. Also, due to page limitations, the
manual is presented in two separate editions – «Section I. Basic
concepts of database systems» and «Section II. Laboratory workshop».

To get acquainted with this material, a list of relevant literature is
recommended.

At the end of the units, there are control questions and tasks that
correspond to the areas of independent work of students. They are aimed
at enhancing cognitive activity, independent creative work and gaining
practical skills. An important feature of the tasks is that they are aimed
at the complex gradual creation of the student during the course of his
own database project, the functional purpose of which he can get as a
task for the course work.

INTRODUCTION

9

The text of the manual uses icons that facilitate the orientation
and search for certain structural elements, namely:

- basic concepts and definitions;

- deserves special attention;

- examples;

- questions for self-control;

- tasks;

- tasks that require the use of a computer;

- tasks using Internet sources.

In preparing the manual used materials from leading companies

providing solutions for database management - Microsoft, Oracle, etc.
Photo materials, background information are obtained from

various open sources on the Internet, to which the authors express their
respect and admiration.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

10

SECTION I.

BASIC CONCEPTS OF
DATABASE SYSTEMS

1. DATABASE CONCEPT

11

 1. DATABASE CONCEPT

1.1. The concept of data, information and database

The concept of information and data. DBMS, its functions. Database as a
model of the subject area.

Data is an integral part of our world and surrounds us everywhere.

Although the terms "data" and "information" have only recently been used,
in fact these concepts have existed since ancient times. Most of the history of
mankind is associated with the processing of data in one form or another
(Fig. 1.1), for example, in the form of documents as data carriers. For
storage of documents and other media, such as manuscripts, books, always
used certain storage - shelves, cabinets, drawers. There, these media were
usually placed in a certain order to make it easier for users to find the data
they needed. Such repositories have become the prototype of modern
databases (DB), which arose due to the need to store a huge amount of data
processed by computers.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

12

According to the well-known analytical company IDC (International
Data Corporation), the amount of data in the world is estimated at 40
zetabytes (ZB). This means that each inhabitant of the Earth has more than
5,000 GB of data! To represent the amount of 40 ZB, analysts compared this
value with the natural figure and concluded that humanity is dealing with the
amount of data about 60 times greater than the amount of sand on the
beaches across the Earth!

Fig. 1.1. Data (information) has always been an integral part of people's lives

Data is any signal received and processed either by a human using

the senses or a technical device. In a broad sense, data are facts about
objects and phenomena of the environment, their parameters,
properties and state (numerical data, text, images, sounds, video
segments). Data can be obtained from measurements, experiments,
arithmetic and logic operations.

In other words, data is raw material that comes from data sources and

is used to form information and knowledge based on them. To paraphrase the
famous physicist Albert Einstein, we can say that everything is relative -
except for the data, because they are absolute.

According to the international standard ISO / IEC 2382: 2015 "Data is
a formalized presentation of information suitable for interpretation,
transmission or processing with human participation or automatic means".

1. DATABASE CONCEPT

13

Thus, the relationship between the concepts of "data", "information",
"knowledge" can be represented in Fig. 1.2.

Information is information that is perceived by information systems
(living organisms, computers) in the process of data processing.
Knowledge is a new value that emerges in the process of processing
and analyzing information and is used for decision making.

Fig. 1.2. The relationship between the concepts "data", "information", "knowledge"

An integral part of computer data processing and analysis are

databases. The famous science-fiction writer Herbert Wells wrote back in
1940: “The vast, ever-increasing wealth of information and knowledge is
scattered throughout the world today. This knowledge would probably be
enough to solve all the enormous difficulties and problems of our time - but
they are scattered and disorganized. We need to clear our minds in a kind of
workshop where we can get, sort, summarize, assimilate, explain and
compare information, knowledge and ideas".

A characteristic feature of our time has been the phenomenon of a
significant increase in the amount of information processed, the
mass flow of information flows and the influx of related problems
of the "information explosion". The most important components of
these processes are computerization and telecommunications.

Anticipating many technical inventions, Wells predicted the

emergence of databases, those "workshops" that are present in all

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

14

information systems today. Any enterprise - large or small - today will not
be able to work without a database, where the main value is concentrated -
information (Fig. 1.3).

Fig. 1.3. Databases as part of information processes at the enterprise

So, what is a DB?

A database is a data storage system organized in a special (special)

way. "Specially organized" means that the data is organized in a way
that makes it easy to find and access data for one or more computer
programs. Also, such data organization requires minimal data
redundancy.
Databases are not only a form of data storage, but also a kind of

information technology.

The main purpose of the database, in addition to saving data, to

provide users with access to data, as well as means of extracting and
modifying it. These functions are provided by special software - Database
Management System (DBMS) (Fig. 1.4). DBMS is a shell through which a
database is created by organizing the structure of the database and filling it
with data. Thus, DBMS provides basic data management functions - Search,
Create, Read, Update, Delete (SCRUD).

Database Management System – special software which controls

the organization, storage, integrity, modification, reading and security
of information in the database.

1. DATABASE CONCEPT

15

Fig. 1.4. Database management system in information processing

With regard to computer data processing, information is understood

as a sequence of symbolic denotation (letters, numbers, encoded graphic
images and sounds, etc.), which carries a semantic load and is displayed in a
computer-readable form. To store data, they are usually represented by
objects and their attributes (Table 1.1).

Object - record, fact, table row, etc.
Attribute - a property that characterizes the object. An attribute is

also called a variable, table field, measurement, characteristic.

 Table 1.1
Example of data presentation

 attributes

objects

customer
code

customer
class

age marital
status

income

01 1 18 singleton 12500
02 1 22 married 10000
03 2 30 singleton 7000
04 1 32 married 12000
05 2 24 divorced 9500
06 1 25 married 6000
07 2 19 singleton 8500

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

16

Information objects - items, processes, phenomena of tangible or

intangible essence, considered in terms of their information
properties.
 Information process - the processes associated with certain

operations on information.

The subject area is the part of the real world that is to be studied in
order to organize management and, ultimately, automation. The subject area
is represented by a large number of fragments, for example, the university it
faculties, departments, groups, individual students. A large number of
objects and processes that use objects, as well as a large number of users
who are characterized by different views of the subject area characterize
each fragment of the subject area.

The subject area is considered in the form of three representations:
representation of the subject area in the form as it really exists, as it is
perceived by the person (for example, the designer of a DB), and as it can be
described by means of formal methods. That is, they say that we are dealing
with reality, the idea of reality and the data that reflect (describe) this idea
(Fig. 1.5).

Fig. 1.5. DB as a model of the real world

Any database is an integral part of an information system (IS), which

aims not only to store data, but also their processing to support specific
decisions. Thus, when creating a database, there is usually a transition from
the representation of a specific subject area to a specific implementation of
the database by means of a specific database in a specific IS (Fig. 1.6).

1. DATABASE CONCEPT

17

Fig. 1.6. The process of database creating

Computer system – a complex of software and hardware designed to
process information
Automated system – organizational and technical system that
implements information technology and integrates the computer
system, physical environment, personnel and information processed
Information system - a complex of organizational, technical,
software and information means combined into a single system for
the purpose of collecting, storing, processing and issuing the
necessary information designed to perform specified functions
Information and telecommunication system - a complex of
information and telecommunication systems, which in the process of
information processing act as a whole

1.2. Database organization technologies

The main components of the database system. Data warehouse. Knowledge

base.

From the very beginning, database systems were centralized, in which

the database, DBMS and application program that processes data from the
database were located on one computer. Such systems are used to solve local
tasks. With the advent of personal computers in the 1980s, such systems

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

18

became available to many small and medium-sized firms, enterprises and
organizations, as well as individuals.

With the development of computer networks, it has become possible
not only to organize access to the DB from another computer, but also to
create a distributed system in which the database consists of several parts
located on different machines.

Modern ISs are characterized by the use of client-server architecture.
This term defines primarily the logical distribution of data processing
functions.

 Client – user application that retrieves data from DB. It is also called

a frontend program.
 Server – software that provides access to DB (backend).

 The client-server technology assumes that, in addition to storing the

database, the central computer (database server) provides the execution of
the main amount of data processing. With this technology, a request to
perform a data operation (for example, a regular selection) issued by a client
(workstation) forces the server to search for data. The received data are
transported on a network from the server to the client (fig. 1.7). A network
вridging the gap between users and information resources.

In the client-server architecture, the database server is responsible for
performing the main functions: working with database files, maintaining the
integrity of links, backup, providing authorized access to data, logging
operations. Of course, the server is also responsible for executing user
requests to select and modify data. Client applications, which are the source
of these requests, run on personal computers on the network.

In addition to two-tier client-server architectures, three-tier
architectures are now popular (Fig. 1.8). They have another link – the
application server, which is all data processing (calculations, analysis,
scheduling, etc.). Only the results of data processing are displayed on the PC
of the user named "thin client".

Applications running in the client-server architecture access the server
and use client programming interfaces either (APIs) or one of the universal
data access mechanisms. Typically, when using such application
architecture, the database server is also responsible for controlling the
preservation of procedures and other database objects.

1. DATABASE CONCEPT

19

Fig. 1.7. Client-server architecture

Fig. 1.8. Client-server three-tier architectures

 In the process of working with DB there is a need to protect data
from situations where there is a possibility of loss, in particular related to the

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

20

simultaneous access to the database of several users. One way to solve this
problem is the transaction mechanism.

Transaction – a logical sequence of operations on data (reading,
deleting, inserting, modifying), indivisible in terms of impact on DB,
which is either performed all together, or all together canceled

Information systems, in which the operational processing of

information in database is called OLTP (On Line Transaction Processing). A
typical example of OLTP systems is mass customer service, such as airline
booking, banking systems, or paying for telephone company services.

During the operation of OLTP-systems in their database accumulated
a lot of data. It turned out that in order to function effectively, such systems
must be organized in a slightly different way than that used in OLTP
systems. Therefore, there is a need to develop a methodology and systems
for analyzing these large amounts of data. At this stage, operational-
analytical analysis has been developed, in which the grouping and
generalization of data in any form required by the analyst, and taking into
account the multidimensionality of data. This approach is called OLAP (On -
Line Analytical Processing).

To implement it, the question arose of using specialized databases that
focus on analytical processing and meet the requirements for decision
support systems. Such databases are called Data Warehouses (DW).
W.H. Inmon described this concept in detail in 1992 in his monograph
“Building the Data Warehouse”.

The concept of DW is based on the idea of dividing data into those
used for operational processing and those needed to solve analysis problems.
This allowed the use of data structures that meet the requirements of their
storage, taking into account the use of OLTP-system and analysis systems.

Data warehouse – a subject-oriented, integrated, immutable data set
that supports chronology and is organized for decision support
purposes.

All data in the DW are divided into three main categories: detailed

data; aggregated data; metadata (Fig. 9).
The data recorded directly by OLTP-systems are detailed. Based on

detailed data the aggregated (generalized) data are formed.

1. DATABASE CONCEPT

21

Fig. 1.9. An example of DW scheme in data analysis system

This is the data used in the analysis process. For convenience of work

with DW the information on the data stored in it is necessary. Such data are
called metadata. Metadata contains all the information necessary to extract,
convert and download data from various sources, as well as for the
subsequent use and interpretation of data contained in the DW. The creation
of data analysis systems has developed in the direction of
"intellectualization" of systems, the implementation of data processing
technologies using the ideas of artificial intelligence. An intelligent system
can be perceived as a computer analog of a person who is a specialist in a
particular subject area. Therefore, in intelligent systems it is necessary to
have a special kind of information called knowledge.

Intelligent System is an interactive computer system designed to

support decision-making in various areas of activity on poorly
structured and unstructured problems, which is based on the use of
models and procedures for data processing and knowledge based on
artificial intelligence technologies.

The most common type of knowledge-based systems are expert

systems (ES). Its main elements are the knowledge base (KB) and a special

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

22

software module that performs logical operations (inferences machine) using
the KB (Fig. 10).

Fig. 1.10. Knowledge-based system

Knowledge base – a set of basic information that relates to a
particular subject area. The main ones are facts, i.e., traditional
data, and rules that reflect patterns and heuristic assumptions.

Thus, knowledge is presented in the form of data, for example, in the

form of text in some formal language, in the form of a semantic network that
defines the connections of various kinds between data elements. In other
words, knowledge is some higher degree of data organization that allows for
special interpretation.

1.3. Databases models

Data consistency. Hierarchical, network and relational models of data
organization.

Data structuring problems have existed since the beginning of the use

of computer technology. These problems in each case were solved
individually. For example, the necessary additions to file systems were
created by developing appropriate program libraries.

1. DATABASE CONCEPT

23

The development of information systems has led to more complex
structural data. Additional individual data management tools have become
an essential part of IS. It quickly became clear that it was impossible to
provide complexed storage methods with a common library program and a
standard file system. The key was the concept of data consistency.

The requirement to maintain data consistency across multiple files,
and thus data integrity, requires that such a system have some of its own data
(metadata) and even knowledge. Thus, the basis for the implementation of
such opportunities should be some model of data organization.

Over time, hierarchical, network and relational models of data
organization in the database were formed. The first two models are the
historical predecessors of the relational model, which dominates modern
databases and is supported by many DBMS.

Hierarchical database, the first version of which appeared in 1968, is a
hierarchically organized set of record types. The model consists of an
ordered set of tree-like structures. The tree type consists of one "root" record
type and an ordered set of subtrees of record types (Fig. 1.11).

The organization of data in the database of the hierarchical type is
defined by the following terms: element (attribute), record (group), group
relationship.

objects

customer 01 customer 02 customer 07

class 1

age 18

singleton

class 1

aGe 22

married

class 2

age 19

singleton

. . .

Fig. 1.11. Hierarchical database

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

24

A data element is the smallest unit of a data structure. A data element
is also often called a field. Each element in the description of the database is
assigned a unique name. He is addressed by this name during processing.

A record is a named set of elements. The use of records allows for one
access to the database to obtain some logically related set of data. In the
database, the records themselves are changed, added and deleted. The type
of record is determined by the composition of its attributes.

A group relationship is a hierarchical relationship between two types
of records. The original record is called the parent record (owner of the
group relationship), and the members of the group relationship are called
child records (subordinates).

The root record of each tree must contain a key field with a unique
value. Non-root write keys should only be unique in group relationships.
Each record is identified by a complete composite key, which means a set of
keys of all records starting from the root and further in a hierarchical path.

The hierarchical model meets the requirements of many real problems,
but not all. The difficulties of the hierarchical model can be illustrated when
performing data manipulation operations on the example shown in Fig. 1.11.
For example, the field "class 01" is duplicated in different trees. If you need
to change the class value, you must browse all the trees to find such a field.

Partly the shortcomings of the hierarchical model were eliminated in
the network data model. The network data model was very popular at the
time, and is still used in some systems. The network data model is defined in
the same terms as the hierarchical one. However, the main difference
between these models is that in a network model, a record can be a member
of more than one group relationship. If in hierarchical structures the child
record must have one parent, then in the network structure of these children
can have any number of parents (Fig. 1.12).

As you can see, in a network model, any element can be associated
with any other element. If in the hierarchical model the connection "one to
many" (1: М) is realized, then in the network connection "many to many"
(М: М). However, the network model is also not without its negatives,
primarily due to its complexity and complicated.

Revolutionary changes occurred in 1970 when Edgar Codd proposed a
relational data model. To date, almost all modern DBMS support this model.
Databases built in accordance with this model are called relational databases
(RDB).

1. DATABASE CONCEPT

25

objects

customer 01 customer 02 customer 07

class 1

age 18

singleton

age 22

married

class 2
age 19

. . .

Fig. 1.12. Network database

The basic concepts of relational

databases are relation, data type, domain,
attribute, tuple, primary key.

The concept of relation underlies the
relational model. The ratio is usually
represented as a two-dimensional table. The
table is clear, convenient and familiar to the
person (see tab. 1.1). Codd himself proved that
a set of relations (tables) could be used to store
data about real-world objects and to model the
relations between them.

The concept of "data type" in a
relational model is adequate to the concept of
data type in programming languages. Modern
relational DB allow the storage of symbolic,
numerical data, bit strings, specialized
numerical data (such as "money"), as well as
special "temporal" data (date, time, time
interval).

Edgar Frank Codd,
British researcher in
the field of computer
science, proposed a
theoretical basis for
relational databases
and data warehouses

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

26

The concept of a domain is related to the data type, but is more
specific to DB. The domain is defined by specifying some basic data type,
which includes domain elements, and an arbitrary logical expression that is
applied to the data type element. If the calculation of this logical expression
gives the result "true", then the data element is a domain element.
Interpretation of the concept of domain is understanding of domain as a valid
potential set of values this type. For example, the domain "age" in our
example table. 1.1 is defined on the basic type numerical data, but it may
include only those data that correspond to age (in particular, such data may
not contain zero values).

We are already familiar with the concept of an attribute, but a tuple is
a set of pairs {attribute name, value}. "Value" is a valid domain value for
this attribute. Tuples are also called "relation - copies". The set of tuples is
relation body. The set of tuples must correspond to one scheme of relations,
which is also called relations title. In other words, the representation of the
relation is a table, the title of which is a relation scheme. Attribute names are
called columns in this table, and rows are tuples.

Then a relational DB is a set of relations that have names and are
displayed in the database schema.

Test questions and tasks

1. What are the features of the information society?
2. What is currently the most important component of the
management decision-making process?
3. What current trends affect management decision-making
processes?
4. What is data, information, knowledge?
5. What is a database?
6. What functions does the database management system provide?
7. Explain the concepts of "object" and "attributes".
8. What are the features of "client-server" technology?
9. What is a transaction?
10. What is the basis of the data warehouse concept?
11. What is the purpose and features of knowledge bases?

 12. What are the models of data organization in the database?
13. Name the basic concepts of relational databases.

1. DATABASE CONCEPT

27

Search the Internet for information on the affiliation between

decision-making processes, data availability, information
operations, and read the materials received.

On the example of decision-making in the enterprise in any
chosen field, give a description of the problem area, management
functions, purpose (desired result), features of information activities
and its impact on the decision-making process. Make the materials
in the form of a report.

Laboratory work 1. The main features of database design
tools.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

28

2. THE CONCEPT OF DATA MODEL

2.1. Properties of relations

Objects and linked relationally. Concept of the key. Primary and foreign keys

Relational are divided into objects and linked.
In objects relational one of the attributes uniquely identifies a single

object (tuple). This attribute is called the primary key (PK).
For convenience, the primary key is written in first column of the

table. In the example of the relation given in table 1.1 key can be attribute
"customer code". If the primary key consists of more than one column, it is
called a composite primary key.

There should be no rows with the same keys in the relation, ie there
should be no duplication of objects. This is a major limitation of the
relational model to ensure data integrity.

A linked relations stores the keys to two or more object relations. That
is, the keys establish connections between objects of relation.

Consider, for example, the following object relation CUSTOMERS,
object relation GOODS and linked relation BUY. A linked relation can have
attributes other than the fields it binds that depend on that connection. An
example might be «quantity» attribute to the BUY relation.

2. THE CONCEPT OF DATA MODEL

29

CUSTOMERS
customer code customer class age income
01 1 18 12500
02 1 22 10000
03 2 30 7000
04 1 32 12000
05 2 24 9500

GOODS
good code name cost
0112 bread 12,50
0333 milk 25,00
0657 cookies 7,00
0778 sweets 32,70

BUY
customer code good code quantity
01 0333 1
01 0657 2
02 0778 5
03 0657 3
04 0112 2
04 0333 2
05 0778 3

Keys in linked relations are called foreign keys (FK) because they are

the primary keys of other relationships. The relational model imposes
constraints on FK to ensure data integrity, which is called reference
integrity.

Each FK must point to a string of some object relations, i.e., FK
cannot refer to a non-existent object

In other words, the value of the FK must match the available values of

the PK of another table (Fig. 2.1).
Such interconnections between tables are called a relationship. The

relationship between two tables is established by assigning the value PK of
one table to the value of FK another table.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

30

CUSTOMERS

customer class
age
income

GOODS

name
cost

BUY

good code
quantity

customer code (PK)

good code (PK)

customer code (PK)

Fig. 2.1. Reference integrity

A group of linked tables is called a database schema.
The relationship can be one-to-one relationship, one-to-many

relationship or master-detail relationship. In this case, the table containing
FK is detail table, and the table containing PK is master table.

2.2. Normalization of relations

Normalization of relations. Normal forms. Системи бізнес-аналітики

One of the first complex problems faced by database developers is the
task of gathering data elements into one tuple. Improper grouping of data
elements can lead to various defects, such as duplication of data, inability to
fulfill a query, etc. To solve this problem, the approach of relations
normalization is used.

This approach is based on the fact that RDB relations contain both
structural and semantic information. Structural information is defined by a
relations scheme, and semantic information is expressed by functional
relationships between attributes. Based on this, the composition of the
attributes must meet two main requirements:

1) there can be no meaningless (undesirable) functional relationships
between attributes;

2. THE CONCEPT OF DATA MODEL

31

2) when grouping attributes there should be minimal duplication of
data.

Satisfaction of these requirements is achieved by normalizing
relations.

Normalization of relations is a step-by-step reverse process of
decomposing the initial relations into smaller and simpler ones. At
the same time all possible functional relationships are established

The normalization procedure was developed by Codd. In this order,

three normal forms are defined: 1NF, 2NF, 3NF. There are other forms, but
it is usually considered sufficient to reduce to 3NF. Each of the normal
forms limits the types of functional relationships of relations.

The relation in which all the attributes are simple is reduced to the
first normal form (1NF)

The relation BUY2 is not normalized, because it contains a complex

attribute "good":

BUY2
customer code good quantity

code name
01 0333 milk 1
01 0657 cookies 2
02 0778 sweets 5
03 0657 cookies 3
04 0112 bread 2
04 0333 milk 2
05 0778 sweets 3

Let's bring this relation to 1NF, that is we will get rid of a difficult

attribute "good". In the received relation BUY3 the key is composite – from
attributes "customer code" and "good code".

If the relation is in 1NF, then all non-key attributes are functionally
dependent on the key. But the degree of dependence can be different. If the
attribute depends only on part of composite key, then it is a partial
dependency. For example, the non-key attribute "good name" depends only
on the attribute "good code", i.e., functionally only on part of the key.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

32

BUY3
customer code good code good name quantity
01 0333 milk 1
02 0778 sweets 5
03 0657 cookies 3
04 0112 bread 2
05 0778 sweets 3

If the non-key attribute depends on the whole composite key and is

not partially dependent on its parts, then it is a complete functional
dependence on the composite key. In relation BUY3 does not have attributes
which are in full functional dependence on the composite key.

Partial dependence leads to the following anomalies:
• there is duplication of data;
• there is a problem of control of data redundancy;
• there is a problem with either not being able to include a new object

in the relationship or removing an object from the relationship.

The relation is in the second normal form if it is in 1NF and each
non-key attribute is functionally completely dependent on the
composite key.

To eliminate the partial dependence and bring the relation to 2NF, it is

necessary to decompose it into two relations. For example, to the type of the
above relationship GOODS and BUY.

The attribute B of relation R functionally depends on the attribute A of
same relation, if each value of attribute A corresponds to no more than one
value of attribute B. The functional dependence is displayed as follows:
A → B. For GOODS, the “cost” attribute is functionally dependent on the
“name” attribute.

In relationship between attributes there may be another type of
dependence – multi-valued dependence. Attribute B multi-valued
dependence on A (A →→ B), if each value of A corresponds to a set of
values of B, not related to other attributes in relation R.

Multivalued dependence is possible if there are at least three attributes
in the relationship: a key and at least two independent attributes. For
example, in BUY3 relations between a “consumer” and a “good” there is a

2. THE CONCEPT OF DATA MODEL

33

“many-to-many” relationship (M: M) because a consumer can buy one or
more goods, and conversely, one product can be bought by several
consumers. There is independent multi-valued relationship between
“consumer” →→ “good” because the values of multi-valued attributes
“good” and “consumer” are not related in any way, and it is possible to
change their values in any which relation line.

Thus, the reduction to 2NF can be described as follows. Let the
relation R (A, B, C, D), PRIMARY KEY {A, B} be given and let there be a
functional dependence A→D. The normalization procedure in 2NF involves
replacing this relation with the following two projections R1 and R2:
R1(A, D) PRIMARY KEY {A}
R2(A, B, C) PRIMARY KEY {A, B}
FOREIGN KEY {A} REFERENCES R1.

Often, 2NF also causes inconvenience due to data redundancy and
transitive functional dependencies. To eliminate them, the next step of
normalization is 2NF to 3NF converts.

If for attributes A, B, C the conditions A → B, B → C are fulfilled,
and the inverse dependence is absent, then C depends on A transitive.

For example, in relation BUY3 the dependence “consumer” → “good”

→ “quantit” is transitive.
The presence of transitive functional dependencies causes the

following anomalies (for example BUY3 relation):
• there is duplication of information (repetition of “good name”

values);
• there is a problem of control of redundancy of data (change of

“goods name” causes need of search and change of all corresponding at all
consumers);

• it is not possible to add new data (about a new good if there are
currently no consumers of this good. Conversely, when deleting a group of
consumers, data on the good may disappear).

The relation is in 3NF if it is in 2NF and in it there are no transitive
dependences of non-key attributes on a key

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

34

Thus, relation BUY3 cannot be included in database. This relation
should be divided into separate relations, such as those listed at the
beginning of this paragraph.

Reduction to 3NF is described as follows. Let the relation R (A, B, C),
PRIMARY KEY {A} be given and be the functional dependence B → C.
The normalization procedure in 3NF involves replacing this relation with
two projections R1 and R2:

R1(B, C) PRIMARY KEY {B}
R2(A, B) PRIMARY KEY {A}
 FOREIGN KEY { B } REFERENCES R1
The third normal form eliminates redundancy and anomalies, if the

relationp has one key, and other dependencies, including multivalued, it is
absent. However, if there are dependencies other than the key dependency,
then 3NF does not ensure the absence of transaction anomalies.

In this case, use enhanced 3NF - the so-called normal Boyce-Codd
form. There are also 4NF and 5NF.

The level of normalization of a relation depends on its semantics,
which are determined by functional dependencies

2.3. Relations operations

Relational algebra. Relational calculus.

In addition to the concept of relations, Codd proposed operations

system of that allow to obtain some relations from others. This approach
makes it possible to divide the data into two parts - which are stored and
which are calculated. This saves memory by retrieving data by calculating
some of the stored data.

In this sense, the most common interpretation of the relational data
model belongs to Christopher Date. He reproduces this interpretation with
various refinements in almost all his books, for example, in “An Introduction
to Database System”.

2. THE CONCEPT OF DATA MODEL

35

 According to Data's teaching, the
relational model consists of three parts that
relate to different aspects of the relational
approach: the structural part, the manipulation
part, and the integral part.

The structural part of the model reports
that the only data structure used in relational
databases is a normalized n-ar relation. We
have considered the very concept and
properties of the structural component of the
relational model since the beginning of this
section.

In the manipulation part of the model,
two fundamental mechanisms of manipulation
of relational databases are declared - relational
algebra and relational calculus.

Relational algebra is based mainly on
classical set theory (with some refinements),
and relational calculus is based on
mathematical logic (the apparatus for
calculating first-order predicates).

Therefore, the efficiency of a relational DB is determined by the
ability to perform on the relations of eight operations of relational algebra.
Such operations on relations are the following: Union, Intersection,
Difference, Cartesian product, Selection, Projection, Connection, and
Division. The first four are traditional operations on sets, the last are special
relational operations. Another additional operation proposed by Codd is
Rename, but by community decision it has become one of the main
operations.

Relational algebra has the property of closedness. This is because

the result of a relational operation on a relation is also a relation.
Therefore, the operations of relational algebra can be nested, that is,
the argument of a particular operation may be the result of another
operation.

When considering the operations of relational algebra, we will denote

attributes in capital letters from the beginning of the Latin alphabet: A, B,…,

Christopher J. Date
- one of the most

prominent specialists
in the field of
databases and

relational data model,
independent author,

lecturer and
consultant

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

36

and sets of attributes - in capital letters from the middle of the Latin
alphabet: L, M,….

In addition, we introduce the concept of compatibility of relations.
The relations R1 (A1,… An) and R2 (B1,… Bk) are said to be compatible if:

1) they have the same number of attributes, i.e., k = n;
2) it is possible to establish a mutually unambiguous correspondence

between the domains of the attributes of the first and second relations.

The notion of relations compatibility is necessary because some
operations (Union, Intersections, and Differences) are only defined
for compatible relationships.

Because different relations can contain attributes with the same name,

attribute names may end up being repeated when performing binary
operations. To ensure the uniqueness of attribute names, they are specified
by the names of the corresponding relations according to the following
syntax: <relations name>. <attribute name>.

Binary operations also have a number of properties:
- operation φ is commutative, if A φ B = B φ A;
- operation φ is associative if (A φ B) φ C = A φ (B φ C);
- operation φ is distributive with operation θ, if A φ (B θ C) = (A φ B)

θ (A φ C).
Next, we consider the operations of relational algebra.
1. Union.
The union of compatible relations (denoted as R1∪R2) with schemes

R1(L) and R2(L) is the following relation R(L), which contains tuples of
both combined relations, but without repetitions:

 R(L)=R1(L)∪ R2(L)={r | r∈R1 ∨ r∈R2}.
In fig. 2.2 shows the interpretation of the Union

operation on the example of two sets. The following is
an example of a relations.

R1 R2 R =R1∪R2
A B A B A B
a1 b1 a1 b1 a1 b1
a1 b2 a2 b1 a1 b2
a2 b3 a2 b1
 a2 b3

Fig. 2.2. Union
operation R1∪R2

2. THE CONCEPT OF DATA MODEL

37

The operation is commutative, associative and distributive regarding
Intersection operation.

2. Intersection.
The intersection of compatible relations (denoted as R1∩R2) with

schemes R1(L) and R2(L) is the following relation R(L),
which contains tuples that are part of both operands:

 R (L) = R1 (L) ∩ R2 (L) = {r | r ∈ R 1 & r ∈ R 2}.
In fig. 2.3 shows the interpretation of the

Intersection operation on the example of two sets. The
following is an example of a relations.

R1 R2 R =R1∩R2
A B A B A B
a1 b1 a1 b1 a1 b1
a1 b2 a2 b1
a2 b3

The operation is commutative, associative and distributive regarding

Union operation.
3. Difference.
The difference of compatible relations (denoted as R1-R2) with

schemes R1(L) and R2(L) is the following relation R(L),
containing those tuples from the first operand R1, which
are not in the second operand R2:

 R (L) = R1 (L) - R2 (L) = {r | r ∈ R 1 & r ∉ R 2}.
In fig. 2.4 shows the interpretation of the

Difference operation on the example of two sets. The
following is an example of a relations.

R1 R2 R =R1∩R2
A B A B A B
a1 b1 a1 b1 a1 b2
a1 b2 a2 b1 a2 b3
a2 b3

The operation is not commutative, not associative and not distributive

with other operations.

Fig. 2.3.
Intersection

operation R1∩R2

Fig. 2.4.
Difference

operation R1-R2

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

38

4. Cartesian product
The Cartesian product of relations R and S (denoted as R × S) with

schemes R (A1, A2,…An) and S(B1, B2,…Bm) is relation Q (A1, A2,…An,
B1, B2,…Bm), which contains all possible tuples connections of relation R
with relation S: Q = R×S = {(r, s) | r∈R & s∈S}. The following is an example
of a relations.

R S Q = R×S
A1 A2 B1 B2 A1 A2 B1 B2
a11 a21 b11 b 21 a11 a21 b11 b 21
a11 a22 b12 b21 a11 a21 b12 b21
a12 a23 a11 a22 b11 b 21
 a11 a22 b12 b21
 a12 a23 b11 b 21
 a12 a23 b12 b21

The operation is commutative and associative.
5. Selection.
First, we define the comparability of attributes. Let θ be one of the

comparison operators, for example: = , ≠ , ≥ , > , ≤ , < . Attributes A and B
of the same or different relations are called θ-comparable if for any values of
a∈A and b∈B the result of the operation aθb is definite (true or false). In
turn, the sets of attributes L = (A1,… Ai, …, Ak) and M = (B1,…, Bi, …,
Bn) are called θ-comparable if k = n and Ai θ-comparable to Bi (i=1,2,… k).
Then the expression LθM is understood as follows:
LθM = (A1θB1) &…& (AkθBk).

We can now define that Selection operation of the relation R under
condition θ-comparable attributes LθM of this relation (denoted by R[LθM])
is a relation whose tuples correspond to the condition LθM:
S = R[LθM] = {r | r∈R & r [L] θ r [M]}.
This operation is also written as σLθM(R). The following is an example of a
selection operation provided by the comparison operator =:

.
R R[A=a2]
A B C A B C
a1 b1 c1 a2 b1 c2
a2 b1 c2 a2 b2 c3
a2 b2 c3

2. THE CONCEPT OF DATA MODEL

39

6. Projection
The projection operation did by removing from relation values that do

not belong to the attributes on which the projection is performed. In the final,
duplicate tuples are removed. That is, the projection operation is some
vertical attribute filter.

If r is a tuple of relation R, and L is a subset attributes of relation R,
then the above definition of the projection has the expression:
S= R[L] = {r[L] | r∈R}.
The projection operation is also written as π L (R). The following is an
example of a projection operation provided by L = А, С:

.
R R[A,С]
A B C A C
a1 b1 c1 a1 c1
a1 b2 c1 a2 c2
a2 b1 c2 a2 c3
a2 b2 c3

7. Connection

If relation R1 has a scheme (L,M), relation R2 – scheme (N,P), and
the sets of attributes M and N are θ-comparable, then the connection of
relations R1 and R2 under the condition M θ N (denoted as R1[M θ N]R2) is
the relation S with scheme (L,M,N,P). The tuples of relation S are obtained
by connecting those tuples of relations R1 and R2 on which the condition
MθN is fulfilled: S = R1[M θ N]R2 ={(r, s) | r∈R1 & s∈ R2 & r[M] θ s[N]}.

As a result, the attributes on which the connection operation is
performed are repeated in the final relation. The operation is commutative
and associative.

If connection is made under the condition of equality, then the
comparison attributes are removed from the final relations. Such a
connection is called a natural connection and the symbol "*" is used to
denote it. For example, the relations R1 (A, B, C, D) and R2 (C, D, E) are
given. As a result of the operation S = R1 * R2 we obtain the relation
S (A, B, C, D, E). The following is an example of performing a natural
connection operation:

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

40

R1 R2 R1*R2
A B C D C D E A B C D E
a1 b1 c1 d1 c1 d1 e2 a1 b1 c1 d1 e2
a1 b1 c2 d1 c2 d1 e3 a1 b2 c1 d1 e2
a1 b2 c1 d1 c2 d1 e1 a2 b3 c1 d1 e2
a2 b3 c1 d1 a1 b1 c2 d1 e3
a2 b4 c2 d3 a1 b2 c2 d1 e3
 a1 b1 c2 d1 e1
 a1 b2 c2 d1 e1

8. Division
First of all, we define the concept of relation image. Let the relation R

with scheme R(M,N) be given. The relation image of R in the tuple
t1∈R[M] is such a set of tuples t2∈R[N], for which the union (t1, t2) belongs
to the relation R. The image of R in the tuple t1 is denoted by IR(t1) and is
formally defined in as follows: IR(t1)={t2 | t2∈R[N] & (t1, t2) ∈R}.

Example:

R IR(a1) IR(a1,b1) IR(c1)
A B C B C C A B
a1 b1 c1 b1 c1 c1 a1 b1
a1 b1 c2 b1 c2 c2
a1 b1 c3 b1 c3 c3
a2 b2 c4

The result of operation Division the relation R (M, N) by the relation

S (K, L) by the sets of attributes N and K (denoted by R [N ÷ K]S) is the
relation Q(M), consisting of such tuples t∈R[M], the images IR(t) which
contain all tuples of projection S[K], ie:
Q= R[N÷K] S={t | t∈R[M]& IR(t) ⊇S[K]}. The condition for performing the
Division operation is compatibility of projections R[N] and S[K].
The operation is not commutative and not associative. Example:

R S S(C) R[C÷C]S
A B C C D C A B
a1 b1 c1 c1 d1 c1 a1 b1
a1 b1 c2 c1 d2 c2
a1 b3 c2 c2 d1
a2 b1 c4 c2 d3

2. THE CONCEPT OF DATA MODEL

41

Test questions and tasks

1. What is a primary key and its purpose?
2. What is a foreign key and its purpose?
3. What is the condition for data integrity?
4. What relationships between tables can exist?
5. What is the principle of normalization of relations?
6. What are the conditions for bringing the relationship to the

first normal form?
7. What are the conditions for bringing the relationship to the

second normal form?
8. What are the conditions for bringing the relationship to the

third normal form?
9. Why was relational algebra proposed?
10. Name the basic operations of relational algebra.

Laboratory work 2. Inter-tabular relations and
normalization.

Create a table in the rows of which enter the types of operations
of relational algebra, and in the columns - their criteria. Evaluate,
at your discretion, the benefits of each for maintaining databases
and line them up in descending order of overall scores.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

42

3. SEMANTIC MODELING

3.1. Basic concepts of semantic modeling

The need for more human-friendly modeling tools. Entity-Relationship

semantic model. CASE-tools.

In the previous sections, we found that the relational model is

convenient and sufficient for modeling subject areas and representing data
structures. However, a database design in terms of relations and on the
methodology of relations normalization basis is a rather complex process.
This is mainly due to the manifestation of some aspects of the limitations of
the relational model:

• the model does not provide sufficient means to present the meaning
of the data;

• in many cases it is difficult to model the subject area on the basis of
flat tables;

• the model does not provide any means to represent dependencies,
although the whole design process is based on dependencies.

The need for more human-friendly modeling tools has led to the
emergence of methods of semantic data modeling (infological modeling).

3. SEMANTIC MODELING

43

The semantic data model, like the relational model, includes
structural, manipulative, and integral parts. But the main purpose of semantic
models is to provide the ability to express the semantics (meaning) of data.

One of the most important and common
semantic models is the Entity-Relationship
(ER) model. The process of semantic modeling
consists in the selection of objects of the
subject area (entities), the establishment of the
properties of selected objects and the
identification of existing connections between
them.

Graphical representation (notation) of
this model is known as ERD
(EntityRelationship Diagram) or ER-scheme
(ER-diagram).

The basic concepts of the ER model are
entitie, relationship and attribute. As in
relational schemes, the concept of normal
forms is introduced in ER-models. Their
content is very close to the content of relational
normal forms. This approach allows at the initial stage to correctly design
the logical structure of the database.

The process of database design can be divided into two stages: logical
and physical design. The result of the first of them is a logical (or
conceptual) data model, which is usually expressed by an ER-diagram. The
result of the second stage is a ready-made database or DDL-script (Data
Definition Language) for its creation.

There are several types of tools (CASE-tools) that allow you to create
ER-diagrams and design databases. Many of these tools are designed not
only for data design, but also for other tasks, such as business process
modeling, functional modeling, etc. In the table. 3.1 presents the most
popular data design CASE-tools.

CASE (Computer-aided software engineering) - a set of tools and
methods for software design

Peter Chen –
An American

originally from
Taiwan, he first
proposed the ER
model in 1976

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

44

Table 3.1
The most popular data design CASE-tools

CASE-tools Producer URL

Designer 2000
Oracle http://www.oracle.com/

 ERwin
Computer

Associates
http://www.cai.com
http://www. erwin.com

PowerDesigner
Sybase http://www.sybase.com

ER/Studio
Embarcadero http://www.embarcadero.com

 Visible Analyst
Visible

Systems http://www.visible.com

Visio Enterprise
Microsoft http://www.Microsoft.com

 The most popular of these are ERwin, ER/Studio and PowerDesigner.

The latter is considered by many experts to be more attractive due to its
many advantages. Among them are support for more than 70 relational
databases, including specialized BI-systems, an excellent relationship editor
that simplifies visualization and clear graphical comparison of data sources
and receivers, a combination of conceptual modeling and data modeling,
business processes and applications (Fig. 3.1). Due to this, PowerDesigner is
recognized as a universal tool for database design and organization of large
data warehouses, as well as for the implementation of complex analytical
programs.

3. SEMANTIC MODELING

45

Conceptual
model

Business
Processes

model

Object-
oriented

model (UML)

ILM
model XML

model

Physical
model

Requirements model

Replication
Definitions,

ETL, EII

BPEL4WS
BPMN,
ebXML

C# VB.NET
Java J2EE
PowerBuilder

DTD
Schema

ODBC or
Native
Drivers

Repository

Fig. 3.1. PowerDesigner supports most of the commonly used standards
modeling

3.2. Construction of semantic models

Basic concepts of the ER-model. Barker notation. Three types of

relationships. Subtypes and supertypes of entitys.

Consider the construction of semantic data models at the stage of

infologic design using the ER-model. Subject area data modeling is based on
the use of graphical diagrams that include a small number of disparate
components.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

46

 As noted, the basic concepts of the ER-model are the entity,
relationship and attribute.

An entity is an object of a subject area, information about which must
be stored and made available. The names of entities are usually nouns, for
example: Customer, Product, Account. There is an entity type and an entity
instance.

The concept of entity type refers to a set
of homogeneous objects, events, personalities
that act as a whole. An entity instance refers to
a specific thing in a set.

In ER-model diagrams
(in Barker notation), the entity
is represented as a rectangle
containing the entity name.
Barker's notation takes into

account the properties of relations, in
particular the use of abstraction (nested
blocks), the designation of the number of
elements (the so-called "goose foot"),
exclusion (exclusion arc), recursion (cyclic
structures).

 An attribute is a named characteristic
of an entity that defines its properties and takes
values from a set of values. Each attribute is
provided with a name that is unique within the entity. This concept is similar
to the concept of attribute in relation.

Attributes can belong to one of three different types: descriptive,
indicative, auxiliary. Descriptive attributes represent the facts inherent in
each instance of the entity. Indicative attributes are used to name or denote
instances of an entity. Auxiliary attributes are used to associate an instance
of one entity with an instance of another.

A set of one or more attributes whose values uniquely identify each
entity instance is called an entity identifier, or key. Each entity instance must
have at least one identifier. If there are several identifiers, one of them is
selected as privileged.

Relationship is a named graphically represented abstraction of
associations between entities. Most relationships belong to the category of

Richard Barker -
Oracle employee,

developer of notation
related to ERD

(1981), author of
“Entity Relationship

Modeling”

3. SEMANTIC MODELING

47

binary and take place between two entities.
The name of relationship is usually represented by a verb. Example of

relationship between entities: Customer-Buys-Goods.
Among the relationships there are three fundamental types of

communication:

one-to-man
many-to-ma

 One-to-one relationship (1:1) when one instance of one entity is

associated with a single instance of another entity. One-to-many relationship
(1:M) when one instance of one entity is associated with one or more
instances of another entity, and each instance of the second entity is
associated with only one instance of the first entity. A many-to-many
relationship (M: M) when one instance of one entity is associated with one
or more instances of another entity, and each instance of the second entity is
associated with one or more instances of the first entity.

Each relationship can have one of two modalities:

The "mayby" modality (conditional relationship) means that an

instance of one entity may be associated with one or more instances of
another entity, or may not be associated with any instance. The "must"
modality (unconditional connection) means that an instance of one entity
must be associated with at least one instance of another entity.

In accordance with the types of relationship entities belong to one of
four classes: core; associative; characteristic; significant.

The core entity (core) is an independent entity. An associative entity is
an entity that formalizes an M:M relationship between two or more entities
or a 1:1 relationship between entity instances. Characteristic entity
(characteristic) is an entity that formalizes the relationship of the form 1:M
or 1:1. The purpose of the description within the subject area is to describe
or clarify some other entity. A signifying entity is a entity that also
formalizes a 1: M or 1:1 relationship between two entities, but differs from a
characteristic in that it does not depend on the designated entity.

The elements of the ER-model also include subtypes and supertypes of

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

48

entities. The entity can be split into two or more mutually exclusive
subtypes. Each of the subtypes has general (common) attributes and/or
relationships, and can also define its own attributes and/or relationships.
General attributes / relationships are explicitly defined once at a higher level.

3.3. Diagrams of entity relationships

ER-instances and ER-types diagrams. The degree of relationship. Normal
forms. Obtaining relational schemes from ER-diagrams

The following graphical tools are used to build ER-models:
• diagrams of ER-instances;
• diagrams of ER-types, or ER-diagrams.
The following is an example of an ER-instance chart and an ER-type

chart that corresponds to the ER-instance chart under consideration:

customer code buys good code
01 0112
02 0333
03 0456
04 0657
05 0778

customer good buys

In the ER-diagram, entities are indicated by rectangles with the name

at the top. They can also show the attributes of the entity (Fig. 3.2). The
diamond indicating the connection may not be indicated.

Based on the analysis of diagrams of ER-types, the relations of the
projected DB are formed. This takes into account the degree of entities
relationship and the class of their affiliation. The class is determined based
on the analysis of ER-instances diagrams of the corresponding entities.

The degree of relationship is a characteristic of the connection
between the entities, which can be of the type: 1:1, 1:M, M:1, M:M. The

3. SEMANTIC MODELING

49

class of affiliation (СА) of the entity can be: mandatory and optional. The
СА of the entity is mandatory if all instances of this entity are necessarily
involved in this relationship, otherwise the СА is optional.

Fig. 3.2. Example ER-diagram of entity relationships

By varying the СА for each of the relationship types, several variants

of ER-type diagrams can be obtained. Consider some examples.
In the previous diagram, the degree of relationship between entities is

1:1, and the СА of both entities is optional. Indeed, each customer buys no
more than one good, and each good is purchased by no more than one
customer (1:1). At the same time, some customers do not buy any goods; and
there is a good that has not been purchased by either customer (the affiliation
class of both entities is optional).

If each customer must buy no more than one good, and each good must
be purchased by no more than one consumer, we have a 1:1 relationship and
a mandatory СА. If each customer must buy no more than one good, and
each good must be purchased, but more than one consumer, we have
relationships of type 1:M and a mandatory СА.

Generally, several variants of СА are possible for 1:M relationship.
Denote the mandatory class by the symbol "A", and the optional - by the
symbol "O". Then the variants can be conditionally represented as: A-A, A-
O, O-A, O-O. For M:1 relationship, 4 similar variants are also possible.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

50

Relationship 1: M and variant О-А occurs when each customer can
buy several goods or none, but each good is purchased by one customer.
Relationship M:M and variant А-О is when each customer buys at least one
good, and the good can be purchased by more than one customer; and there
is a goods that no one buys.

ER-diagrams are convenient because the process of selecting entities,
attributes and relationships is iterative. The developed first approximate
version of the diagrams can be gradually refined by obtaining additional
information about the subject area.

As in relational schemes, the concept of normal forms is also
introduced in ER-diagrams. Their content is very close to the content of
relational normal forms.

In the first normal form of ER-diagrams, repetitive attributes are
eliminated, ie implicit entities are identified, which at first glance were
considered attributes. The second normal form removes attributes that
depend only on part of the unique identifier. This part of the unique
identifier defines a separate entity. The third normal form removes attributes
that depend on attributes that are not included in the unique identifier. These
attributes are the basis of a separate entity.

From ER-diagrams it is possible to receive relational schemes. This
happens in several stages. First, each simple entity (which is not a subtype or
supertype) is transformed into a table. The entity name becomes the table
name. Each attribute becomes a possible column in the table with the same
name. Next, the components of the unique entity identifier are converted to
the primary key of the table. If there are several possible unique identifiers,
then the most used one is selected. M:1 and 1:1 relationships determine
foreign keys. A copy of the unique identifier is made from the end of the
"one" link, and the corresponding columns make up the foreign key. Next,
indexes are created for the primary key, foreign keys, and those attributes on
which the queries are supposed to be based.

Finally, the question of subtypes presence in the conceptual scheme is
resolved. In this case, either all subtypes are collected in one table, or a
separate table is created for each subtype.

3. SEMANTIC MODELING

51

Test questions and tasks

1. What is the main purpose of semantic models?
2. What is the process of semantic modeling?
3. Explain the basic concepts of ER-models and their graphical
representation on models.
4. What tools do you know that allow you to create entity-
relationship diagrams?
5. Describe the schemes of three fundamental types of relationship.
6. Name the four main classes of entities.
7. What is the difference between ER-instance diagrams and ER-type
diagrams?
8. Explain the normal forms of ER-diagrams.

 19. How to get relational schemes from ER-diagrams?

Using Internet resources, search for tools that allow you to create
entity-relationship charts. Create a table in the rows of which
enter the found tools, and in the columns give their main
characteristics. Compare them and line them up in descending
order of what you think is the level of their benefits.

Laboratory work 3. Creating databases and tables in Sybase
Power Designer

 S1. BASIC CONCEPTS OF DATABASE SYSTEMS

52

4. INTRODUCTION TO DATABASE
PROGRAMMING

4.1. The concept of SQL language

The basic concept of SQL language. The main operators.

With the databases dissemination, there was a need to create and

standardize programming languages that allowed users to manipulate data.
One such language that developed as a result of the relational data model is
the Structured Query Language (SQL). This language has now become
widespread and has in fact become the standard language of relational
databases.

SQL is not a procedural language. This means that in this language

you can specify what to do with the database, but you can not
describe the algorithm of this process.
SQL is a relationally complete language. This means that the

expressions of this language allow us to define each relationship
using algebraic expressions of relational algebra.

4. INTRODUCTION TO DATABASE PROGRAMMING

53

The emergence of the
SQL language is associated with
the development in the early
1970s of the experimental
relational DBMS IBM System
R. For this DBMS was created a
special language SEQUEL that
allows relatively simple data
management. This language was
then renamed SQL.

The American National
Standards Institute (ANSI)
issued the first SQL standard in
1986. In 1987, the International
Organization for Standardization (ISO) adopted it as an international one.
Further development of the language is associated with the adoption in 1992
of a new extended standard ANSI SQL-92 or simply SQL2. The next
standard was SQL: 1999 (SQL3). The standard adopted in 2003 (SQL: 2003)
is currently in force, with minor modifications made later.

The presence of clear basic principles of SQL leads to the
compatibility of different implementations of the language helps to increase
of software and databases portability and the versatility of database
administrators. SQL can be used both to execute data queries and to build
applications.

Implementation in SQL concept of operations focused on tabular data
representation, allowed to create a compact language with a small set of
operators (commands) (Fig. 4.1). The main categories (subsets) of SQL
language commands: DDL – data definition language; DML – data
manipulation language; DCL – data control language. These categories side
data administration commands and transaction management commands.

Data Definition Language (DDL) is designed to create and modify
database object structures, such as creating and deleting tables. The main
DDL commands are as follows: CREATE TABLE, CREATE INDEX,
ALTER TABLE, ALTER INDEX, DROP TABLE, DROP INDEX.

Data Manipulation Language (DML) is used to manipulate data inside
relational DB objects using three main commands: INSERT, UPDATE,
DELETE. Adjacent to this group is the SELECT command. This command,

Donald Chamberlin & Ray Boyce
- IBM employees who developed

the SQL language

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

54

along with its many options and expressions, is used to query DB.
Data control language (DCL) commands allow you to control access

to data. Typically, they are used to create objects associated with access to
data, and also serve to control the distribution of privileges between users.
Data control commands: GRANT, REVOKE.

Fig. 4.1. The main categories SQL commands

With the help of data administration commands, the user monitors the

actions performed and analyzes the database operations. These commands
can also be useful in analyzing DBMS performance.

Database transaction management commands include: COMMIT,
ROLLBACK, SAVEPOINT, SET TRANSACTION.

SQL language as a powerful tool that provides access to information
contained in relational databases, is the basis of many DBMS. This is due to
many advantages of the SQL language, such as standardization,
independence from specific databases, the ability to transfer from one
computer system to another, support for client-server architecture, and
others.

However, the SQL language is not without its drawbacks, which
requires researchers to think about new principles of data access languages
for the next generation.

4. INTRODUCTION TO DATABASE PROGRAMMING

55

4.2. Data types in SQL

Strihgs. Numerical data. Logical data. Temporal data.

In SQL, as in all programming languages, the types of data supported

are important. The data type determines the set of valid values, the format of
their storage, the size of the allocated memory and the set of operations that
can be performed on the data. SQL provides several types of data (Fig. 4.2).

Fig. 4.2. Types of data in SQL

In most databases, the bulk of data is presented in numerical, symbolic

and date/time forms (Table 4.1). This is natural, because such data are
inherent in the subject areas of human activity.

Numerical data can be of two types - exact and approximate. The first
allows you to accurately express the value of the number. At the same time,
some values have a very large range of values, ie both very small (close to 0)
and very large. For example, to present scientific data. In such cases, it is
sufficient to limit themselves to some approximate representation (taking
into account the technical capabilities of the computer).

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

56

Table 4.1
Example of data composition in a typical DB

The exact numerical types include the following:
- integer - integer (without fractional part) number. Usually, numbers

of this type in the range from - 2147483648 to 2147483647 (four-byte
integer);

 - smallint - a small integer. Usually, numbers of this type in the range
from - 32 768 to 32 767 (two-byte integer);

- bigint - a large integer. The number of bits depends on the SQL
implementation and exceeds the number of bits of the integer type;

- numeric (x, y) - a number in which all x digits (accuracy), of which y
digits (scale) is assigned to the fractional part;

- decimal (x, y) - a decimal number in which all x digits, of which y
digits are assigned to the fractional part. This type is very similar to numeric.

Approximate numerical types include the following:
- real - a real number of single precisions with a floating dividing

point (this point "floats", appearing in different places of the number);
- double precision - a real number of double precisions with a floating

dividing point;
- float (x) - a real number with a floating dividing point and a

minimum accuracy of x, which occupies no more than 8 bytes.
Integer types (integer, smallint, or bigint) are used for table columns

that contain different kinds of identifiers (for example, customer codes,
products, orders), or quantitative data (for example, number of boxes,
packages, pieces). If the column of the table should contain numbers with a
fractional part, then for it it is possible to set not integer type. If you are not
sure what to use, it is advisable to choose exact (numeric, decimal). They

4. INTRODUCTION TO DATABASE PROGRAMMING

57

require fewer resources and give accurate results. If the column is intended
to store data from a very wide range (both very small and very large
numbers), then use approximate data types (float, real).

String data (character sequences) has three main string types:
- character (n), or char (a string of fixed length), where n is the

maximum number of characters contained in the string. If less than n
characters are entered, the remaining positions are filled with spaces. If n is
not specified, it is assumed that the string consists of one character;

- character varying (n), or varchar (variable length string) is used
when the entered data have different lengths and it is undesirable to
supplement them with spaces. In this case, the indication of the maximum
number of characters is mandatory.

- character large object (clob) is used to represent very large character
strings (for example, texts of articles, books, etc.).

The data type is intended for storing date values, the elements of
which are arranged in the following order: year (4 digits), hyphen (-), month
(2 digits), hyphen, day (2 digits). Thus, the date values occupy 10 positions,
for example, 2021-12-22.

There are two types of time representation:
- time without time zone is designed to store time values, the

elements of which are arranged in the following order: hour, colon, minute,
colon, seconds. Hours and minutes are represented by two digits, and
seconds can be represented by two or more digits (if a fractional part is
required), for example 19:45:21.653. The length of the fractional part of
seconds depends on the implementation, but the internal representation of
time must have at least 6 digits;

- time with time zone is the same data type as time without time zone.
The only difference is that the time value is supplemented by information
about the difference between local and world time (Universal Time
Coordinated, UTC, or Greenwich Mean Time). The length of this data type
is equal to the length of type time without time zone plus 6, because
additional information about the time difference occupies 6 positions
(hyphen, sign (+) or (-), 2 digits for hours, colon, 2 digits for minutes).

In SQL, you can represent the date and time at simultaneously. Two
types of data are used for this:

- timestamp without time zone (x), where (x) fractional part of
seconds. If there is no fractional part, then the data occupy 19 positions: 10

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

58

positions for the date, one space and 8 positions for time. If a fractional part
is defined, then the data length is 20 plus the number of digits in the
fractional part of seconds;

- timestamp with time zone - the same type of data, but to the value
of time is added information about the difference between local and world
time. Additional information occupies 6 positions.

The difference between two date-time values is interval. SQL supports
two interval types: year-month and day-time. A year-month interval is the
number of years and months between two dates, and a day-time interval is
the number of days, hours, minutes, and seconds between two points within
a month.

The interval can be set in two ways: in the form of initial and final
moments or in the form of the initial moment and duration. Example:

- interval set by the start and end moments:
time '14:05:50 ', time '14:35:50';
- interval set by the starting point and duration in hours:
time '14:05:50 ', interval' 30 ' minute.
In SQL it is also possible to process logical data (data type boolean).

This type has three values - true, false and unknown. The value unknown is
entered to indicate the result obtained when compared to the value null
(indefinite). If the user has not yet entered any value in the table element,
then this "empty" element contains a null value, which is interpreted as an
unknown or undefined value.

 In SQL statements, logical values are enclosed in quotation marks,
such as 'true'.

4.3. Transact-SQL

SQL and T-SQL. The SELECT command.

Despite the existence of SQL standards, almost every DBMS from

different vendors uses its own dialect of SQL. For the popular Microsoft
SQL Server, this language extension is Transact SQL (T-SQL).

T-SQL supports most of the features that are also available in the
original SQL version. However, there are some differences, as T-SQL adds:
control statements; support for Microsoft Windows authentication; global

4. INTRODUCTION TO DATABASE PROGRAMMING

59

and local variables; additional functions for processing dates, strings, etc. As
a conclusion, you can embed SQL in T-SQL, but you cannot embed T-SQL
in SQL.

A distinctive feature of T-SQL is the use of the SELECT command.
This command is a tool that completely abstracts from data presentation
issues. It helps focus the user's attention on data access issues. Such
approach clearly demonstrates one of the fundamental principles of large
(industrial) DBMS: the means of storing and accessing data should be
separated from the means of presenting data.

The SELECT command does not change the data in the database, but
only selects them in accordance with the specified criteria. The point of the
SELECT command is to select rows from one or more tables. In this sense,
the command is closed - the result of its execution will also be a table. The
command replaces all the relational algebra operators and allows you to form
the resulting relation that matches the query.

The SELECT command has the following format:
SELECT [predicate]
 {* | [column_name [AS new_name]]} [, ... n]
FROM table_name [[AS] alias] [, ... n]
[WHERE <selection_condition>]
[GROUP BY column_name [, ... n]]
[HAVING <group selection criteria>]
[ORDER BY column_name [, ... n]];
The parts of the SELECT command shown are called a sentences or

phrase.
The SELECT command defines the fields (columns) to be included in

the query result. In the list, they are separated commas and are given in the
order in which they should be presented in the query result. If the name is
used fields containing spaces or delimiters, it must be enclosed in square
brackets.

If several tables are being processed, then the full field specification is
used in the field list, i.e. Table_name.Field_name.

The SELECT command is executed in strict order, so the sequence of
sentences and phrases in the command cannot be changed.

First, the names of the tables used FROM are determined. Next,
records are selected from the specified table that meet the specified WHERE
conditions. Then the received records are grouped. Using GROUP BY, groups

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

60

of rows are formed that have the same value in the specified column.
HAVING allows you to select a group of rows that meet the specified
conditions. ORDER BY sorts the records in the specified order. Finally,
SELECT sets which columns should appear in the output. Only two sentences
- SELECT and FROM - are required, all others can be omitted.

The following SELECT example returns all rows (WHERE sentence
not specified) and all columns (uses an asterisk *) of the Works database
Product table, grouping records by ASC name:
USE Works;
GO
SELECT *
FROM Production.Product
ORDER BY Name ASC;
GO

For a more detailed study of T-SQL and SELECT, in particular, it is
advisable to refer to special sources.

4.4. Special database objects

Store procedures. Triggers. View.

In a client-server model, business logic is distributed between client

and server. On the client's computer, the business logic is implemented in the
form of automated operations for processing data of the domain area. On the
server, business logic is implemented as stored procedures, triggers and
views (Fig. 4.3). These are named blocks of SQL code that are precompiled
and stored on the server to quickly execute frequently called query functions.

 Stored procedure is a named set of precompiled SQL commands

that can be called from a client application or from another stored
procedure.
Trigger is a procedure that is executed automatically in response to

an event (for example, inserting, changing or deleting data in a table).
View is a virtual (logical) table, the content of which is dynamically

calculated based on the data in real tables.

4. INTRODUCTION TO DATABASE PROGRAMMING

61

Client Server

Business logic

Stored procedures
Triggers

Domain area
data processing

Views

Fig. 4.3. Distribution of elements of business logic between client and server

Stored procedures are pieces of code written in SQL to perform a

specific task. The user can explicitly call stored procedures. It's like a
subroutine, it can take some input as a parameter, then it can do some
processing and return values.

On the other hand, a trigger is a stored procedure that runs
automatically when various events occur. Triggers are more like an event
handler that fires on a specific event. A trigger cannot accept input and
cannot return values. DML triggers run when a user tries to modify data
through a data manipulation language (DML) event. DML events are
INSERT, UPDATE, or DELETE statements on a table or a view.

Storing and executing code on the server allows you to create code
only once, and not in every application working with a database, which
saves time when writing and maintaining programs. This ensures that data
integrity and business rules are maintained regardless of which client
application is accessing the data. Triggers and stored procedures do not need
to be forwarded over the network from the client application, which
significantly reduces network traffic.

It is advisable to use triggers to prevent certain changes to the
database schema, to configure the execution of certain actions in DB in
response to changes in the DB schema, to write changes or events to the DB
schema in the log. In addition, triggers can be bound not only to a table, but
also to a view.

Triggers may be created on views, as well as ordinary tables, by
specifying INSTEAD OF in the CREATE TRIGGER statement. If one or
more ON INSERT, ON DELETE or ON UPDATE triggers are defined on a

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

62

view, then it is not an error to execute an INSERT, DELETE or UPDATE
statement on the view, respectively.

Regarding the view, it should be noted that, unlike ordinary relational
database tables, it is not an independent part of the dataset stored in the
database. However, changes to the data in the real database table are
immediately reflected in the contents of all views built on the basis of this
table (Fig. 4.4).

Triggers
INSTEAD OF

Business logic
applcation

Views

Relations
table

changing data in
a real DB table

data update
data retrieval

ServerClient

Fig. 4.4. Reflection on changing data in a real database table

The typical way to create views for a DBMS is to link the view to a

specific SQL query. Accordingly, the content of the view will be the result
of this request. Views are used in database queries in the same way as
regular tables. The view name can be in the place of the table name in the
SQL query (in the FROM clause).

For many DBMS, such as PostgreSQL, Ms SQL Server, Oracle, a
view can contain a subset of records from the database table that meets
certain conditions, or a subset of the database table columns required by the
program, as well as the result of processing the table data by certain
operations. For example, if you have one table "University", you can create
two views "Students" and "Teachers", in each of which there will be records
only about people of the corresponding position. Or from the real table
"Sales" the view can contain for each product only the name and article.

Using views does not provide any completely new possibilities for
working with a database, but it can be very convenient. First, views hide the
complexity of the queries and the very structure of the database tables from

4. INTRODUCTION TO DATABASE PROGRAMMING

63

the application program. The use of views allows you to separate the
application schema of data presentation from the storage schema. From the
point of view of the application program, the data structure corresponds to
the representations from which the program extracts this data. In reality, data
can be stored in a completely different way.

In addition, views provide another layer of data protection. The user
can be granted only view rights, so that he will not have access to data that is
not intended for him, located in the same tables.

4.5. Development of user applications in the ‘client-server’
environment

Client/server application. Database connection. Database access

architecture.

Database connection is one of the most important functions that

modern information systems perform. Preparation of SQL queries from the
client side to DB on the server can be performed using a dedicated utility.
However, to provide the user with great opportunities and convenience in
preparing and executing requests, as well as in processing the received data,
client applications are created.

In principle, a client/server application consists of a client program
that consumes services provided by a server program. The client requests
services from the server by calling functions in the server application. Thus,
the application always selects a part of the code, or a module responsible for
sending requests to the database and processing the responses received from
it.

However, this is not enough. To ensure interaction with the database
server (with the DBMS), additional tools are required, among which the
main ones are:

DB-LIB interface (DataBase-Library);
ODBC technology (Open DataBase Connectivity);
OLE DB interface (Object Linking and Embedding, DataBase);
DAO technology (Data Access Objects);
ADO technology (ActiveX Data Objects).

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

64

The general modern architecture of access from an application to a
database looks like in Fig. 4.5.

Application

DB DB
Fig. 4.5. Modern database access architecture

DB-LIB is an optimized application program interface specially

designed for database access. This method allows for the fastest access to
information. This is because DB-LIB directly uses the SQL-query.

ODBC technologies are designed to provide interconnection between
various DBMS. ODBC's capabilities consist in receiving requests from the
application to retrieve information, translating them into the kernel language
of the addressed DBMS for accessing the information stored in the database.
Thus, the main purpose of ODBC is to abstract the application from the
features of the back-end database engine.

The OLE DB interface is recommended for building applications and
utilities that require high performance. The core capabilities of the OLE DB
specification provide complete data access functionality.

When using DAO technology, great convenience in working with
database objects is provided. DAO abstracts the entities of the application
domain and makes them map to the database, defines the general methods of
using a connection, getting and closing it.

Currently, DAO technology is gradually being replaced by ADO
technology, which developed by Microsoft. ADO allows you to represent
data from a variety of sources (relational databases, text files, and so on) in

4. INTRODUCTION TO DATABASE PROGRAMMING

65

an object-oriented manner. In general, ADO technology can be described as
the most modern technology for developing Web applications for working
with distributed bases of client-server technology.

Test questions and tasks

1. Name the main categories (subsets) of SQL commands.
2. Name the types of data supported by SQL.
3. What is Transact SQL used for?
4. Name the main features using the SELECT command.
5. How is the business logic distributed between the client and the

server in the client-server model?
6. Explain also triggers and stored procedures.
7. What is a view and what is it used for?
8. What is required to ensure interaction between the application
and the database server?
9. Explain what the ODBC technology is for.

Laboratory work 4. SQL-queries
Laboratory work 5. Complicate SQL-queries for a few tables
Laboratory work 6. SQL-queries for insert, modify and delete
rows in database tables
Laboratory work 7. Creation of views, triggers, indexes and store
procedures
Laboratory work 8. Transactions.

 S1. BASIC CONCEPTS OF DATABASE SYSTEMS

66

5. COMMERCIAL AND FREELY DISTRIBUTABLE
DBMS

5.1. General characteristics of the DBMS market

DBMS classification. Rating assessments.

The current DBMS market can be classified in three directions -

1) commercialization, 2) relativity of the model and 3) by size (Fig. 5.1).

DBMS
Relational

Non-Relational Large
(industrial)

Small
(desktop)

Proprietary
(commercial)

Free
(open source)

Fig. 5.1. Current DBMS classification

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

67

With regard to commercialization, it should first be reminded that
proprietary (commercial) products are software for which property
copyrights are retained by restricting the right to use them. For freely
distributable software, authors and owners allow you to study, modify, and
distribute a modified product, often by opening the raw code. The main
representatives of the proprietary DBMS are Oracle, Ms SQL Server, DB2.
MySQL and PostgreSQL stand out among the freely distributable DBMS.

Among large (industrial, or server) DBMS first of all we see already
familiar names - Oracle, Ms SQL Server, DB2, MySQL, PostgreSQL, and
also Sybase, MongoDB and others. To date, more than two dozen desktop
DBMS formats are known. The most popular are Paradox, FoxPro,
Microsoft Access, SQLite.

Most of the above DBMSs are relational using SQL to access data.
Recently, however, there has been an emergence of non-relational DBMSs
("No RDBMS", more called "NoSQL"). This is due to the need to create
parallel distributed systems for highly scalable Internet applications, such as,
for example, search engines. These include MongoDB, Redis, Casandra and
others.

A wide range of DBMS provokes their rating assessments. At the
same time, from year to year, the top positions are occupied by practically
the same products (Fig. 5.2).

Fig. 5.2. TOP popular DBMS

The database management systems market is one of the most
conservative in the IT industry. The DBMS is the "heart" of the enterprise IT

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

68

system, and it is not changed unless absolutely necessary. Therefore, in the
"old" systems, proprietary solutions of the giants of the IT market will
prevail for a long time. But new corporate systems are likely to be based on
open source DBMS. They are now the most popular with developers.

At the same time, cloud technologies brought a revival to the market.
Companies producing "native cloud" DBMS (Amazon Web Services,
Alibaba, Google) have achieved great success and in a matter of years were
able to harshly increase their market share. However, traditional leaders,
primarily Microsoft, Oracle, SAP, are not missing the trend. They also rely
on cloud-based versions of their products, incorporating new capabilities
into their DBMSs.

5.2. Ms SQL Server

General Information. Services and components. Creating a database.

Familiarity with database management systems should be carried out

on the example of Ms SQL Server. First, this database is widely used to
support small and medium-sized databases, as well as large databases of
enterprise scale. In addition, a lightweight version (SQL Server Express
Edition) is used for teaching at many universities.

Ms SQL Server was launched in 1989. At the time, its base code was
based on Sybase SQL Server code. This allowed Microsoft to enter the
enterprise database market. To eliminate Sybase's claims of copyright
infringement, all legacy code in the seventh version DBMS was rewritten by
Microsoft.

Ms SQL Server is constantly evolving to work with critical business
applications and business intelligence in both traditional data centers and in
private, public, and hybrid cloud environments. Each release is marked with
a corresponding year and has its own code name. For example, the popular
SQL Server 2012 is called Denali.

In addition to development versions, Microsoft releases SQL Server in
a variety of versions, which vary in affordability and feature sets depending
on end-user goals.

SQL Server has built-in support for the .NET Framework for
application development. Due to this, database access procedures can be
written in any language of the .NET platform using a complete set of

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

69

libraries.
Ms SQL Server consists of individual components that run on

Microsoft Windows operating systems as services. A service is a special
type of program that runs in OS background.

The Ms SQL Server Installation Wizard lists all the components for a
custom installation:

 Database Engine - for data storage, processing and protection;
 Analysis Services - for interactive analytical processing;
 Reporting Services - to create reports;
 Integration Services - for data integration, transformation and

transformation;
 Full-Text Search - for full-text search;
 SQL Server Replication - for copying and distributing

synchronized data;
 Service Broker - to create complex applications for

communication between disparate databases;
 Notification Services - to send e-mails;
 software and utilities;
 documentation and samples.
The Database Engine component is the main service for storing,

processing and protecting data. This component is used to create a database,
for online transaction processing or interactive analytical processing. When
you start SQL Server, the Database Engine service starts. Users can then
establish new connections to the server.

Microsoft SQL Server software tools and utilities allow users,
programmers, and administrators to perform the functions that the
components described above provide. For example, SQL Server
Management Studio is designed to manage the database, used to write
Transact-SQL code, multidimensional expressions and XML. In
Management Studio, you can develop and manage Database Engine
solutions, manage deployed Analysis Services solutions, run and manage
Integration Services packages, manage Reporting Services servers, reports,
and report models, and process emails.

Thus, SQL Server Management Studio is the main tool for SQL
Server administration. It is an integrated environment that provides
connectivity, configuration, management, administration, and development
for all SQL Server components. Management Studio combines a large set of

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

70

graphical tools and a number of powerful script editors, as well as provides
access to SQL Server for developers and administrators at all levels.

The database creation procedure is usually only done the database
administrator. This procedure includes such steps as directly creating a
database, as well as creating a transaction log belonging to the database. The
first stage creates a file with *.mdf extension for main files and a file with
*.ndf extension for secondary files. At the second stage, a file with the *.ldf
extension is created.

To create a new database SQL Server Management Studio is used. In
the Object Explorer window, the server destination is selected and the New
Query item is selected in the menu that appears (Fig. 5.3).

Fig. 5.3. Using SQL Server Management Studio to create a database

To create a database named "usersdb" in the central field for entering

SQL expressions, enter the CREATE DATABASE command (Fig. 5.4) and
click on the Execute button on the toolbar (or press the F5 key). After that, a
new database will appear on the server.

Fig. 5.4. Using the CREATE DATABASE command

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

71

The database file (*.mdf) can be transferred between computers.
However, if you copy it to a computer with MS SQL Server installed, the
database will not appear just like that. To do this, you need to attach the DB
to the server. In this case, the CREATE DATABASE command also applies:
CREATE DATABASE database_name
ON RIMARY(FILENAME='path_to_mdf_file_on_local_computer')
FOR ATTACH;

As a directory for the DB, it is advisable to use the directory where the
rest of the server databases are stored. On Windows 10, the default directory
is C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\
MSSQL\DATA.

To drop a database (or several databases at once), use the DROP
DATABASE command:
DROP DATABASE database_name1 [, database_name2] ...

 If the database to be removed was attached, all files of this database
will be deleted anyway.

Most of the actions to change the database configuration are done
using the command ALTER DATABASE database_name.

The command syntax assumes several parameters. For example, the
ADD parameter adds new files to the database, and the REMOVE parameter
is used to remove files or groups of files from the database.

5.3. Freely distributable DBMS

MySQL. Creating a database. PostgreSQL. Client-server architecture.

The most famous of the freely distributed DBMSs that support SQL

are MySQL, PostgreSQL, and Firebird. Apache Cassandra, CouchDB,
MongoDB are popular among "non-SQL systems".

MySQL is a very popular, fast, multi-threaded,
multi-user relational database server that supports SQL.
MySQL is free software and open source. MySQL is
licensed under the GNU General Public License

(http://www.gnu.org). Up-to-date information on MySQL is provided by
https://www.mysql.com.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

72

MySQL was developed by the Swedish commercial company MySQL
AB. In 2008, MySQL AB was bought for a billion dollars by Sun
Microsystems and is currently owned by Oracle Corporation.

MySQL is one of the components of LAMP technology (Linux,
Apache, MySQL, PHP).

MySQL was originally designed to handle very large databases much
faster than existing solutions. MySQL has long been used successfully in
large industrial environments. Further development of MySQL in the areas
of connectivity, performance and security have made this server very
convenient for supporting DBs on the Internet.

MySQL is a "client-server" system that supports various client
programs and libraries, administrative toolkits and multiple programming
interfaces. MySQL also includes some extensions to the SQL92 ANSI
standard.

The attractiveness of MySQL is due to three main advantages.
First of all, it is flexible and easy to use. The user can change the

source code to meet his own expectations, without having to pay anything
for this level of freedom. The server installation process is relatively simple
and usually takes no more than 30 minutes.

Secondly, it is high productivity. MySQL supports a wide range of
servers. Whether you want to store large amounts of e-commerce data or
perform heavy business analytics, MySQL performs these tasks at optimal
speed.

In the end, this is security, because data security is the main criterion
for choosing a DBMS software. With an account access and management
system, host-based authentication and password encryption, MySQL
provides a high level of security.

If you carry out a large detailed analysis, then it will appear that
MySQL has a number of features that bring this DBMS to the forefront. This
includes the ability to run on many different platforms, and support for
interfaces for different programming languages, and the ability to mix tables
from different databases in one query, and processing tables in memory, and
much more. We should also mention the support for truly huge amounts of
data. The latest MySQL versions allow a maximum table size of up to 8
million terabytes (263 bytes). There is a case of using MySQL for 60,000
tables that store about 5,000,000,000 rows.

The following system requirements are required to install MySQL on

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

73

a local computer: 128 MB of RAM; 200 MB of free disk space; Windows
(x86 / x64) or Linux.

When installing MySQL to support full-fledged administration, table
filling, and data access, you must select the following components:

mysql (directly mysql itself);
mysql gui tools (for administration and creation of new users);
mysql connector odbc (component through which the programming

environment can access data);
mysql-front (for filling, creating, and viewing user tables).
To create a new database and the user to continue working with it,

first configure the administrator account in MySQL-Front (Fig. 5.5), and
then proceed to create a new database. Next you need to create one or more
users to access the database. Users are entered by the administrator. To do
this, he uses mysql gui tools (Fig. 5.6).

Fig. 5.5. Configure the administrator account in MySQL-Front

Then the user can create tables in the database using the graphical
interface of the CREATE TABLE command (Fig. 5.7) as well as perform
other operations.

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

74

Fig. 5.6. Admission by the database user

Fig. 5.7. Creating a table in the database using the graphical interface of the
CREATE TABLE command

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

75

 Another example of the success of freely
distributed software is PostgreSQL. Unlike other similar
DBMS, a single company does not control PostgreSQL.
PostgreSQL development has been made possible by the
collaboration of many people and companies. A
prototype called POSTGRES was developed at the University of California,
Berkeley in 1987 with the participation of Michael Stonebreaker, after which
it was actively developed and supplemented.

Currently, PostgreSQL is used to implement large systems, such as
financial data analysis systems, asteroid tracking, medical information,
geographic systems, and more. PostgreSQL is also used as a learning tool in
universities.

A PostgreSQL server written in C is usually distributed as a set of
open-source text files. To install, you need to compile the files and collect
them to some directory. The whole process is detail described in
documentation. By the way, the documentation on PostgreSQL is quite a lot
and is issued by many universities.

PostgreSQL is focused on most of the SQL standard and supports
many modern DBMS functions. At the same time, users can expand the
capabilities of PostgreSQL, creating their own data types, functions,
operators, procedural languages, etc.

PostgreSQL is implemented in a client-server architecture. The
working session includes the following interacting processes (programs):

• the main server process (called postgres), which manages DB files,
accepts client application connections and performs various client requests to
databases;

• a client application of a user who wants to perform operations in DB.
Clients can be very diverse. Some client programs come with the

PostgreSQL distribution, but of course, most are created by third-party
developers.

A PostgreSQL server can handle multiple client connections at the
same time. For each connection, the main postgres process generates a
separate server process. In this way, the client and this process interact
without affecting the postgres process. One connection cannot access more
than one DB. However, the client is not limited in the number of connections
to the same or to different databases.

The PostgreSQL server can manage multiple databases, which allows

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

76

you to create separate databases for different projects and users running a
single DBMS. However, DBs must have unique names that begin with a
letter and be no longer than 63 characters. It is convenient to use the user’s
name as the database name.

Before a DB creating, the administrator must create a PostgreSQL
account for the user who will create the database, and give the user the
appropriate permission (Fig. 5.8).

Fig. 5.8. Creating a PostgreSQL account for the user

Having created a database, you can access it in different ways,
namely:

• run a terminal program called psql, in which you can interactively
enter, edit and execute SQL commands;

• use existing graphical tools, such as pgAdmin;
• use an office suite with ODBC or JDBC support, which allows you

to create and manage databases;
• write and use your own application through one of the many

available language interfaces.

ODBC (Open Data Base Connectivity) is an open-source database
application programming interface developed by the X/Open
consortium.
JDBC (Java Data Base Connectivity) - connection to databases in
Java

If to connect by means of psql it is necessary to enter the command:
$ Psql [db_name]
If you do not specify a database name, it will be selected by username.

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

77

5.4. NoSQL DBMS

Fundamental characteristics. Advantages and disadvantages.

At the end of 2010, the term “NoSQL” became very popular. All

kinds of software solutions began to actively develop and promote under this
flag. These decisions were associated with huge amounts of data, linear
scalability of the database, clusters, fault tolerance, and also non-relationality
of the database. However, the term “NoSQL” rather characterizes the vector
of IT development away from relational databases.

It should be emphasized that the term “NoSQL” has an absolutely
spontaneous origin and does not have a generally accepted definition. It
stands for “Not Only SQL”, although there are supporters of the direct
definition of “No SQL”. The NoSQL label now hides a lot of heterogeneous
systems, but there are few common characteristics for all NoSQL (Fig. 5.9).
Many characteristics are unique to certain NoSQL databases.

Fig. 5.9. Variety of NoSQL databases

What are the main distinguishing features of a NoSQL database?
First, it is not using SQL (meaning ANSI SQL DML). Many DBMSs

try to use query languages similar to SQL syntax, but no one has yet been
able to fully implement it. The rejection of SQL is related to the second
feature – the unstructured database (schemaless). In NoSQL databases,
unlike relational databases, the data structure is not regulated (weakly

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

78

typed). In a separate line or document, you can add an arbitrary field without
first declaratively changing the structure of the entire table.

The consequence is the third feature – the presentation of data in the
form of aggregates. The relational model stores the logical business entity of
the application in various tables that are normalized. NoSQL storages
operate with these entities as with integral objects - aggregates (Fig. 5.10).

Relational model

Aggregate model 1 Aggregate model 2

Fig. 5.10. Using aggregates in a NoSQL database

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

79

The example shows a standard relational trade model (“order - order
items - payment - product”) and two aggregate models. In both models, the
order is combined with the order items into one logical entity. Moreover,
each position order items stores a link to the product and some of its
attributes. In one aggregate, payment is combined with the order and are an
integral part of the object, in the other, they are placed in a separate object.
This demonstrates the main rule of designing a data structure in NoSQL
databases – it must obey the requirements of the application and be
maximally optimized for the most frequent queries.

The aggregate model, like the relational model, is not without its
drawbacks. However, its benefits appear in a distributed environment and in
large data, providing faster read speeds. It is in such environments of fast
distributed clusters - financial, online shopping, ticket booking - that high
requirements are imposed on the atomicity and consistency of operations.
Transactions must be executed at the highest rate so that the maximum
interval during which the user can see inconsistent data is no more than a
second. The fulfillment of the conditions of “eventual consistency” should
prevent cases when, for example, client B orders the same ticket that client A
had already ordered a moment ago.

This is perhaps the main theme in the development of NoSQL
databases. With the explosion of information and the need to process it in a
reasonable amount of time, the issues of speed, scalability, and throughput
have come to the fore. The only way out of the situation is to connect a fast
network of several independent servers, and each server processes only a
part of the data or only a part of requests for reading-updating the database.
The NoSQL DBMS itself deals with sharding procedures, replication,
ensuring fault tolerance, redistributing data in case of adding nodes.

Sharding – separation of data by nodes (servers) in the network.
Replication – copying data to other nodes when updating the
database.

Thus, NoSQL databases are optimized for applications that need to

quickly processsng large amounts of different data structures with low
latency. Taking into account today's trends, non-relational storages are
directly focused on Big Data (Fig. 5.11).

S1. BASIC CONCEPTS OF DATABASE SYSTEMS

80

NoSQL

Easy Replicftion

Fast Performance

High Scalability

BigData Capability

High Availability

Fig. 5.11. Features of NoSQL DBMS important for Big Data

All NoSQL solutions are usually divided into 4 types.
Key-value is the simplest option, using a key to access a value within

a large hash table. Such DBMS are used to store images in scalable Big Data
systems, in Internet of Things (IoT) projects. The most famous
representatives are Oracle NoSQL Database, Berkeley DB, MemcacheDB,
Redis, Riak, Amazon DynamoDB.

In document-oriented storage, data is represented as a semi-structured
document of tagged elements, like XML and others. The most common use
of documentary NoSQL is in content management systems (CMS),
publishing, and documentary search. The most prominent examples are
CouchDB, Couchbase, MongoDB, eXist, Berkeley DB XML.

Column storage contains information in the form of a sparse matrix,
the rows and columns of which are used as keys. In the world of Big Data,
“Column Family” databases are referred to as column storages. In such
systems, values are stored in columns presented in separate files. Thanks to
this data model, it is possible to store a large number of attributes in a
compressed form, which speeds up the execution of queries to the database.
This makes it possible to use such DBMS for registering and processing
events in exchange analytics systems, IoT applications, etc. The most
famous columnar database is the Google Big Table, as well as Apache
HBase and Cassandra based on it.

Graph storage is a networked database that uses nodes and edges to
display and store data. Since the edges of the graph are stored, traversing it
does not require additional calculations (like a join in SQL). Such DBMSs
are used in communication-oriented tasks – social media, fraud detection,

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

81

public transport routes, road maps, network topologies. Examples of graph
bases: InfoGrid, Neo4j, Amazon Neptune, OrientDB, AllegroGraph,
Blazegraph, InfiniteGraph, FlockDB, Titan, ArangoDB.

Just because the NoSQL movement is gaining popularity at an
enormous rate does not mean that relational databases are becoming archaic.
Most likely they will still be used actively, but more and more in symbiosis
with NoSQL databases. The choice of storage will come from the nature of
the data itself, from what amounts of data and how we want to manipulate
them.

Test questions and tasks

1. In what areas can the modern DBMS market be classified?
2. Describe Ms SQL Server.
3. Describe the purpose and capabilities of SQL Server Management
Studio.
4. What are the stages of creating a database in a SQL Server
environment.
5. Name the most famous freely distributable DBMS.
6. Describe the MySQL DBMS.
7. Describe the PostgreSQL DBMS.
8. What are the main distinguishing features of a NoSQL database?
9. What types are customary to divide NoSQL solutions into?

Laboratory work 9. Access rights management
Laboratory work 10. Upload and download database. Replication.
Laboratory work 11. Creation and using of non-SQL database (in
Redis environment)

 LITERATURE

82

 LITERATURE

1. Hlushkov V. M. Osnovy bezbumazhnoi informatyky. M.:

Nauka,1982. 552 с.
2. Nesterenko O.V. Informatsiini systemy upravlinnia

pidpryiemstvamy. Navch. posib. Kyiv: UkrNTs RIT, 2019. 135 с.
3. Nesterenko O.V., Savenkov O.I., Falovskyi O.O. Intelektualni

systemy pidtrymky pryiniattia rishen. Navch. posib. / Za red. Bidiuka P.I.
Kyiv: Natsionalna akademiia upravlinnia, 2016. 188 с.

4. Rudenko V. D. Bazy danykh v informatsiinykh systemakh. Navch.
posibnyk / za zah. red. V. Yu. Bykova. Kyiv: Feniks, 2010. 240 с.

5. Pasichnyk V.V., Reznichenko V.A. Orhanizatsiia baz danykh ta
znan. Kyiv: Vydavnycha hrupa BHV, 2006. 384 с.

6. Pasichnyk V. V., Shakhovska N. B. Skhovyshcha danykh. Navch.
posib. / za red. V. V. Pasichnyka. Lviv: Mahnoliia, 2008. 492 с.

7. Christopher Date. An Introduction to Database System.Pearson
Education, 2004. 1034 p.

8. Gruber Martin. Understanding SQL. San Francisco: Sybex, 1990.
9. Viescas John L., Hernandez Michael J. SQL Queries for Mere

Mortals: A Hands-On Guide to Data Manipulation in SQL, 3rd Edition.
2014, Addison-Wesley Professional. 800 p.

10. Ward Bob. SQL Server 2019 Revealed: Including Big Data
Clusters and Machine Learning. 2020, Apress. 480 p.

11. Kleppman Martin. Designing Data Intensive Applications.
O’Reilly, 2014. 144 p.

12. Simkovics Stefan. Enhancement of the ANSI SQL
Implementation of PostgreSQL. Department of Information Systems, Vienna
University of Technology. 1998. Vienna, Austria.

5. COMMERCIAL AND FREELY DISTRIBUTABLE DBMS

83

13. A. Yu and J. Chen. The Postgres95. User Manual. 1995.
University of California. Berkeley, California.

14. Zelaine Fong. The design and implementation of the POSTGRES
query optimizer. University of California, Berkeley, Computer Science
Department.

15. www.mysql.com
16. www.postgresql.org
17. www.mongodb.com
18. redis.com

Навальний посібник

Фаловський Олександр Олександрович
Нестеренко Олександр Васильович

Основи пректування та використання
баз даних

(англійською мовою)

Підп. до друку 17.01.2023 Формат 60х84/16.
Гарнітура Futura Book. Папір офc. Друк офсет.

Обл.‐вид. арк. 4,10, Ум.‐друк. арк. 5,25.
Наклад 350 прим.

Видавництво ТОВ «Тропеа».
Свідоцтво про внесення суб’єкта видавничої справи

до Державного реєстру — серія ДК № 7025 від 24.12.2019 р.
01001, Київ, вул. Мала Житомирська 10, нежиле приміщення 60, літ. А.

 Віддруковано у друкарні ТОВ «Про формат».
Україна, 04080, м. Київ, вул. Кирилівська, 86.

Свідоцтво про внесення суб’єкта видавничої справи до державного
реєстру ДК № 5942 від 11 січня 2018 р.

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Add frames around each page: no
 Sheet size: 5.827 x 8.268 inches / 148.0 x 210.0 mm
 Sheet orientation: tall
 Layout: scale to rows 0 down, columns 0 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 0
 0
 0.9900
 0
 0
 1
 0.0000
 1

 D:20230124143944
 595.2756
 a5
 Blank
 419.5276

 Tall
 481
 204

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

